682 research outputs found

    Hinode EIS: updated in-flight radiometric calibration

    Full text link
    We present an update to the in-flight radiometric calibration of the Hinode EUV Imaging Spectrometer (EIS), revising and extending our previous studies. We analyze full-spectral EIS observations of quiet Sun and active regions from 2007 until 2022. Using CHIANTI version 10, we adjust the EIS relative effective areas for a selection of dates with emission measure analyses of off-limb quiet Sun. We find generally good agreement (within typically ±\pm 15%) between measured and expected line intensities. We then consider selected intensity ratios for all the dates and apply an automatic fitting method to adjust the relative effective areas. To constrain the absolute values from 2010 we force agreement between EIS and Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) 193 Angstroms observations. The resulting calibration, with an uncertainty of about ±\pm 20%, is then validated in various ways, including flare line ratios from Fe XXIV and Fe XVII, emission measure analyses of cool active region loops, and several density-dependent line ratios.Comment: submitted to Ap

    Three-dimensional magnetic reconnection simulations using the Eulerian Conservative High Order (ECHO) code

    Get PDF
    Magnetic reconnection and shear driven instabilities are pervasive phenomena in the heliosphere and in astrophysical plasmas in general. Magnetic reconnection and Kelvin-Helmholtz-like instabilities require the use of high-order numerical approximations to study their linear and non-linear evolution. At the same time, in compressible MHD the dynamical activity following reconnection processes leads to formation of discontinuous modes which should be treated by shock-capturing numerical schemes. For this purpose we have designed an Eulerian Conservative High Order (ECHO) code in which, i) explicit diffusivity is taken into account, ii) high-order numerical approximations of flux derivatives are included and iii) shock-capturing algorithms are employed in managing flux discontinuities. This code has been applied successfully in studying the linear and non-linear 3D evolution of the tearing instability and in following the 3D evolution of a current sheet embedded in a sheared flow

    Coronal Diagnostics from Narrowband Images around 30.4 nm

    Full text link
    Images taken in the band centered at 30.4 nm are routinely used to map the radiance of the He II Ly alpha line on the solar disk. That line is one of the strongest, if not the strongest, line in the EUV observed in the solar spectrum, and one of the few lines in that wavelength range providing information on the upper chromosphere or lower transition region. However, when observing the off-limb corona the contribution from the nearby Si XI 30.3 nm line can become significant. In this work we aim at estimating the relative contribution of those two lines in the solar corona around the minimum of solar activity. We combine measurements from CDS taken in August 2008 with temperature and density profiles from semiempirical models of the corona to compute the radiances of the two lines, and of other representative coronal lines (e.g., Mg X 62.5 nm, Si XII 52.1 nm). Considering both diagnosed quantities from line ratios (temperatures and densities) and line radiances in absolute units, we obtain a good overall match between observations and models. We find that the Si XI line dominates the He II line from just above the limb up to ~2 R_Sun in streamers, while its contribution to narrowband imaging in the 30.4 nm band is expected to become smaller, even negligible in the corona beyond ~2 - 3 R_Sun, the precise value being strongly dependent on the coronal temperature profile.Comment: 26 pages, 11 figures; to be published in: Solar Physic

    High Order Upwind Schemes for Multidimensional Magnetohydrodynamics

    Get PDF
    A general method for constructing high order upwind schemes for multidimensional magnetohydrodynamics (MHD), having as a main built-in condition the divergence-free constraint \divb=0 for the magnetic field vector \bb, is proposed. The suggested procedure is based on {\em consistency} arguments, by taking into account the specific operator structure of MHD equations with respect to the reference Euler equations of gas-dynamics. This approach leads in a natural way to a staggered representation of the \bb field numerical data where the divergence-free condition in the cell-averaged form, corresponding to second order accurate numerical derivatives, is exactly fulfilled. To extend this property to higher order schemes, we then give general prescriptions to satisfy a (r+1)th(r+1)^{th} order accurate \divb=0 relation for any numerical \bb field having a rthr^{th} order interpolation accuracy. Consistency arguments lead also to a proper formulation of the upwind procedures needed to integrate the induction equations, assuring the exact conservation in time of the divergence-free condition and the related continuity properties for the \bb vector components. As an application, a third order code to simulate multidimensional MHD flows of astrophysical interest is developed using ENO-based reconstruction algorithms. Several test problems to illustrate and validate the proposed approach are finally presented.Comment: 34 pages, including 14 figure

    EUV emission lines and diagnostics observed with Hinode/EIS

    Full text link
    Quiet Sun and active region spectra from the Hinode/EIS instrument are presented, and the strongest lines from different temperature regions discussed. A list of emission lines recommended to be included in EIS observation studies is presented based on analysis of blending and diagnostic potential using the CHIANTI atomic database. In addition we identify the most useful density diagnostics from the ions covered by EIS.Comment: 14 pages, 3 figures, submitted to PASJ Hinode first results issu

    Quantum control theory for coupled 2-electron dynamics in quantum dots

    Full text link
    We investigate optimal control strategies for state to state transitions in a model of a quantum dot molecule containing two active strongly interacting electrons. The Schrodinger equation is solved nonperturbatively in conjunction with several quantum control strategies. This results in optimized electric pulses in the THz regime which can populate combinations of states with very short transition times. The speedup compared to intuitively constructed pulses is an order of magnitude. We furthermore make use of optimized pulse control in the simulation of an experimental preparation of the molecular quantum dot system. It is shown that exclusive population of certain excited states leads to a complete suppression of spin dephasing, as was indicated in Nepstad et al. [Phys. Rev. B 77, 125315 (2008)].Comment: 24 pages, 9 figure

    Properties of solar polar coronal plumes constrained by Ultraviolet Coronagraph Spectrometer data

    Full text link
    We investigate the plasma dynamics (outflow speed and turbulence) inside polar plumes. We compare line profiles (mainly of \ion{O}{6}) observed by the UVCS instrument on SOHO at the minimum of solar cycle 22-23 with model calculations. We consider Maxwellian velocity distributions with different widths in plume and inter-plume regions. Electron densities are assumed to be enhanced in plumes and to approach inter-plume values with increasing height. Different combinations of the outflow and turbulence velocity in the plume regions are considered. We compute line profiles and total intensities of the \ion{H}{1} Lyα\alpha and the \ion{O}{6} doublets. The observed profile shapes and intensities are reproduced best by a small solar wind speed at low altitudes in plumes that increases with height to reach ambient inter-plume values above roughly 3-4 R_\sun combined with a similar variation of the width of the velocity distribution of the scattering atoms/ions. We also find that plumes very close to the pole give narrow profiles at heights above 2.5 R_\sun, which are not observed. This suggests a tendency for plumes to be located away from the pole. We find that the inclusion of plumes in the model computations provides an improved correspondence with the observations and confirms previous results showing that published UVCS observations in polar coronal holes can be roughly reproduced without the need for large temperature anisotropy. The latitude distributions of plumes and magnetic flux distributions are studied by analyzing data from different instruments on SOHO and with SOLIS.Comment: 11 figure

    X-raying the AU Microscopii debris disk

    Full text link
    AU Mic is a young, nearby X-ray active M-dwarf with an edge-on debris disk. Debris disk are the successors of the gaseous disks usually surrounding pre-main sequence stars which form after the first few Myrs of their host stars' lifetime, when - presumably - also the planet formation takes place. Since X-ray transmission spectroscopy is sensitive to the chemical composition of the absorber, features in the stellar spectrum of AU Mic caused by its debris disk can in principle be detected. The upper limits we derive from our high resolution Chandra LETGS X-ray spectroscopy are on the same order as those from UV absorption measurements, consistent with the idea that AU Mic's debris disk possesses an inner hole with only a very low density of sub-micron sized grains or gas.Comment: 11 pages, 10 figures, accepted for publication in A&
    • 

    corecore