10 research outputs found

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    The economic well-being of nations is associated with positive daily situational experiences

    Get PDF
    People in economically advantaged nations tend to evaluate their life as more positive overall and report greater well-being than people in less advantaged nations. But how does positivity manifest in the daily life experiences of individuals around the world? The present study asked 15,244 college students from 62 nations, in 42 languages, to describe a situation they experienced the previous day using the Riverside Situational Q-sort (RSQ). Using expert ratings, the overall positivity of each situation was calculated for both nations and individuals. The positivity of the average situation in each nation was strongly related to the economic development of the nation as measured by the Human Development Index (HDI). For individuals’ daily experiences, the economic status of their nation also predicted the positivity of their experience, even more than their family socioeconomic status. Further analyses revealed the specific characteristics of the average situations for higher HDI nations that make their experiences more positive. Higher HDI was associated with situational experiences involving humor, socializing with others, and the potential to express emotions and fantasies. Lower HDI was associated with an increase in the presence of threats, blame, and hostility, as well as situational experiences consisting of family, religion, and money. Despite the increase in a few negative situational characteristics in lower HDI countries, the overall average experience still ranged from neutral to slightly positive, rather than negative, suggesting that greater HDI may not necessarily increase positive experiences but rather decrease negative experiences. The results illustrate how national economic status influences the lives of individuals even within a single instance of daily life, with large and powerful consequences when accumulated across individuals within each nation

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Measurement of the mass of the Z boson and the energy calibration of LEP

    Get PDF
    In 1985 the French government created a unique circuit for the dissemination of doctoral theses: References went to a national database “TĂ©lĂ©thĂšses” whereas the documents were distributed to the university libraries in microform. In the era of the electronic document this French network of deposit of and access to doctoral theses is changing. How do you discover and locate a French thesis today, how do you get hold of a paper copy and how do you access the full electronic text? What are the catalogues and databases referencing theses since the disappearance of “TĂ©lĂ©thĂšses”? Where are the archives, and are they open? What is the legal environment that rules the emerging structures and tools? This paper presents national plans on referencing and archiving doctoral theses coordinated by the government as well as some initiatives for creating full text archives. These initiatives come from universities as well as from research institutions and learned societies. “TĂ©lĂ©thĂšses” records have been integrated in a union catalogue of French university libraries SUDOC. University of Lyon-2 and INSA Lyon developed procedures and tools covering the entire production chain from writing to the final access in an archive: “CyberthĂšses” and “Cither”. The CNRS Centre for Direct Scientific Communication at Lyon (CCSD) maintains an archive (“TEL”) with about 2000 theses in all disciplines. Another repository for theses in engineering, economics and management called “Pastel” is proposed by the Paris Institute of Technology (ParisTech), a consortium of 10 engineering and commercial schools of the Paris region

    TRY plant trait database, enhanced coverage and open access

    No full text
    Plant traits-the morphological, ahawnatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    corecore