8 research outputs found

    DAD vision: opto-electronic co-designed computer vision with division adjoint method

    Full text link
    The miniaturization and mobility of computer vision systems are limited by the heavy computational burden and the size of optical lenses. Here, we propose to use a ultra-thin diffractive optical element to implement passive optical convolution. A division adjoint opto-electronic co-design method is also proposed. In our simulation experiments, the first few convolutional layers of the neural network can be replaced by optical convolution in a classification task on the CIFAR-10 dataset with no power consumption, while similar performance can be obtained

    Predicting Indoor Temperature Distribution Based on Contribution Ratio of Indoor Climate (CRI) and Mobile Sensors

    No full text
    In practical building control, quickly obtaining detailed indoor temperature distribution is necessary for providing satisfying personal comfort and improving building energy efficiency. The aim of this study is to propose a fast prediction method for indoor temperature distribution without knowing the thermal boundary conditions in practical applications. In this method, the index of contribution ratio of indoor climate (CRI), which represents the independent contribution of each heat source to the temperature distribution, has been combined with the air temperature collected by one mobile sensor at the height of the working area. Based on a typical office model, the effectiveness of using mobile sensors was discussed, and the influence of its acquisition height and acquisition distance on the prediction accuracy was analyzed as well. The results showed that the proposed prediction method was effective. When the sensors fixed on the wall were used to predict the indoor temperature distribution, the maximum average relative error was 27.7%, whereas when the mobile sensor was used to replace the fixed sensors, the maximum average relative error was 4.8%. This indicates that using mobile sensors with flexible acquisition location can help promote both reliability and accuracy of temperature prediction. In the human activity area, data from a set of mobile sensors were used to predict the temperature distribution at four heights. The prediction accuracy was 2.1%, 2.1%, 2.3%, and 2.7%, respectively. However, the influence of acquisition distance of mobile sensors on prediction accuracy cannot be ignored. The distance should be large enough to disperse the distribution of the acquisition points. Due to the influence of airflow, some distance between the acquisition points and the room boundaries should be given

    The Application of Photovoltaic-Electric Spring Technology to Rural Power Grids

    No full text
    Rural power grids are essential for rural development, impacting the lives of farmers, the agricultural economy, and the overall efficiency of agricultural production. To ensure the reliable operation of these grids, finding ways to provide high-quality power is imperative. In recent years, the penetration rate of distributed photovoltaic (PV) in the distribution network has been increasing. When the output of PV and load are not matched, the voltage fluctuation of the network affects the safe and stable operation of the distribution network. In this study, we propose that the stable operation of rural power grids can be achieved by employing a photovoltaic-electric spring (PV-ES) device. A state space model of PV-ES is established and a single PV-ES voltage control method, based on a PI controller, is proposed, taking a rural user household with a monthly power consumption of about 120 access to distributed power supply as an example. We analyzed the device’s effectiveness in addressing voltage fluctuation issues as well as how light intensity impacts its effectiveness. The implementation of the PV-ES device solves the most significant problem faced by rural power grids, namely, the unstable power supply that occurs during peak electricity consumption periods. In addition, the PV-ES device ensures a high-quality electricity consumption experience for consumers

    Design of Low-Cost Full W-Band 8th Harmonic Mixers for Frequency Extension of Spectrum Analyzer

    No full text
    High-order harmonic mixer is popular for frequency extension of spectrum analyzer (SA) from microwave to millimeter-wave or even terahertz band. The manufactures of SA usually offer expensive harmonic mixers where frequency extension is needed. In this work, low-cost designs of 2-port and 3-port W-band 8th harmonic mixers covering 75–110 GHz are proposed, and design method of two port mixer without frequency diplexer to separate local oscillator (LO) and intermediate frequency (IF) signals are first presented. These two kinds of mixers are compatible with almost all the current SAs with frequency extension options, which provides LO for the external harmonic mixer. The mixers are designed with planar microstrip lines and antiparallel Schottky diodes. The circuit of 2-port mixer includes the input broadband bandpass filter, diodes, output lowpass filter, and matching circuits. As for 3-port mixer, only an extra diplexer is needed to separate the IF signal and LO signal. The diplexer is composed of a planar semi-lumped lowpass and a highpass filter. The planar circuits are easily fabricated with low-cost print circuit board process on polytetrafluoroethylene substrate. The measured conversion loss of 2-port 8th harmonic mixer is from 20 to 26 dB, and 23 to 28 dB for 3-port mixer at full W-band. The good measured results indicate the proposed mixers are simple and effective

    Efficient Degradation of Congo Red in Water by UV-Vis Driven CoMoO4/PDS Photo-Fenton System

    No full text
    In order to improve the catalytic activity of cobalt molybdate (CoMoO4), a PDS-activated and UV-vis assisted system was constructed. CoMoO4 was prepared by coprecipitation and calcination, and characterized by XRD, FTIR, Raman, SEM, TEM, XPS, TGA Zeta potential, BET, and UV-Vis DRS. The results showed that the morphology of the CoMoO4 nanolumps consisted of stacked nanosheets. XRD indicated the monoclinic structures with C2/m (C32h, #12) space group, which belong to α-CoMoO4, and both Co2+ and Mo6+ ions occupy distorted octahedral sites. The pH of the isoelectric point (pHIEP) of CMO-8 at pH = 4.88 and the band gap of CoMoO4 was 1.92 eV. The catalytic activity of CoMoO4 was evaluated by photo-Fenton degradation of Congo red (CR). The catalytic performance was affected by calcination temperature, catalyst dosage, PDS dosage, and pH. Under the best conditions (0.8 g/L CMO-8, PDS 1 mL), the degradation efficiency of CR was 96.972%. The excellent catalytic activity of CoMoO4 was attributed to the synergistic effect of photo catalysis and CoMoO4-activated PDS degradation. The capture experiments and the ESR showed that superoxide radical (·O2−), singlet oxygen (1O2), hole (h+), sulfate (SO4−·), and hydroxyl (·OH−) were the main free radicals leading to the degradation of CR. The results can provide valuable information and support for the design and application of high-efficiency transition metal oxide catalysts
    corecore