33 research outputs found

    Nutrient cycling potential within microbial communities on culturally important stoneworks

    Get PDF
    Previous studies on microbes associated with deterioration of cultural heritage (CH) stoneworks have revealed a diverse microbiota adapted to stresses such as low nutrients, aridity and high salinity, temperatures and radiation. However, the function of these pioneer microbial communities is still unclear. This study examines bacterial and archaeal diversity in exfoliated and dark encrustation sandstone from Portchester Castle (UK) by 16S rRNA and functional gene analyses. Bacterial and archaeal communities from the exfoliated sites were distinctly different from the dark encrustation. Detected genera were linked to extreme environmental conditions, various potential functional roles and degradation abilities. From these data it was possible to reconstruct almost complete nitrogen and sulfur cycles, as well as autotrophic carbon fixation and mineral transformation processes. Analysis of RNA showed that many of the detected genera in these nutrient cycles were probably active in situ. Thus, CH stonework microbial communities are highly diverse and potentially self‐sustaining ecosystems capable of cycling carbon, nitrogen and sulphur as well as the stone biodeterioration processes that lead to alterations such as exfoliation and corrosion. These results highlight the importance of diversity and internal recycling capacity in the development of microbial communities in harsh and low energy systems

    Biocleaning of Cultural Heritage stone surfaces and frescoes: which delivery system can be the most appropriate?

    Full text link
    [EN] The use of the advanced biotechnology of microbiological systems for the biological cleaning of Cultural Heritage (CH) has been recently improved and optimized taking into account different factors. Biocleaning systems have been indeed applied to historic buildings, statue,s and frescoes. Such application has developed new techniques and optimised and refined the existing systems. These systems remove altered forms like sulfate and nitrate crusts and organic substances like animal glue in a more effective, less invasive way than the traditional cleaning techniques. This review focuses on several delivery systems (sepiolite, hydrobiogel-97, cotton wool, carbogel, mortar and alginate beads, agar, and arbocel) used for the biocleaning of Cultural Heritage, comparing their main properties and characteristics, making a critical evaluation on how easy they can be applied, and on their future potentiality as ready-to-use and risk-free formulates. Therefore, this review will help conservation scientists, conservator-restorers, and researchers in the field to choose the most appropriate delivery system for any specific applications.This Project has been partially supported by the project VALi+d APOSTD/2013/024 from the Generalitat Valenciana, Spain.Bosch Roig, MDP.; Lustrato, G.; Zanardini, E.; Ranalli, G. (2014). Biocleaning of Cultural Heritage stone surfaces and frescoes: which delivery system can be the most appropriate?. Annals of Microbiology. 65(3):1227-1241. https://doi.org/10.1007/s13213-014-0938-4S12271241653Alfano G, Lustrato G, Belli C, Zanardini E, Cappitelli F, Mello E, Sorlini C, Ranalli G (2011) The bioremoval of nitrate and sulfate alterations on artistic stonework: The case-study of Matera Cathedral after six years from the treatment. Int Biodeterior Biodegrad 65(7):1004–1011An L, Zhao TS, Zeng L (2013) Agar chemical hydrogel electrode binder for fuel-electrolyte-fed fuel cells. Appl Energy 109:67–71Antonioli P, Zapparoli G, Abbruscato P, Sorlini C, Ranalli G, Righetti PG (2005) Art-loving bugs: The resurrection of Spinello Aretino from Pisa’s cemetery. Proteomics 5:2453–2459Anzani M, Berzioli M, Cagna M, Campani E, Casoli A, Cremonesi P, Fratelli M, Rabbolini A, Riggiardi D (2008) Use of rigid agar gels for cleaning plaster objects. Quaderni del Cesmar 7, nÂș6. Il Prato, PadovaAtlas RM, Chowdhury AN, Gauri KL (1988) Microbial calcification of gypsum-rock and sulfated marble. Stud Conserv 33(3):149–153Baglioni P, Berti D, Bonini M, Carretti E, Dei L, Fratini E, Giorgi R (2014) Micelle, microemulsions, and gels for the conservation of cultural heritage. Adv Colloid Interface Sci 205:361–371Barbabietola N, Tasso F, Grimald M, Alisi C, Chiavarini S, Marconi P, Perito B, Sprocati AR (2012) Microbe-based technology for a novel approach to conservation and restoration. EAI Speciale II. Knowledge, Diagnostics and Preservation of Cultural Heritage 69-76Beltrami E, Berzioli M, Cagna M, Casoli A, Cremonesi P, Cuaz N, Selva Bonino VE (2011) La pulitura dei dipinti murali: studio comparativo di materiali e metodi. Progetto Restauro 58:2–15Beltrami E, Berzioli M, Cagna M, Casoli A, Selva Bonino VE (2012) La pulitura dei dipinti murali: uno studio di applicabilitĂ  di sistemi tradizionali e sistemi addensati con gel acquosi di poliacrilato. Quaderni del Cesmar 7, nÂș10. Il Prato, PadovaBhatnagar P, Khan AA, Jain SK, Rai MK (2010) Biodeterioration of archaeological monuments and approach for restoration. In: Jain SK, Khan AA, Rai MK (eds) Geomicrobiology. CRC Press, Science Publishers, Enfield, pp 255–302. ISBN 978-1-57808-665-8Biavati B, Sorlini C (2008) Microbiologia agroambientale. Ambrosiana, Milano pp, 684. ISBN 978-88-408-1383-7Blazquez AB, Lorenzo J, Flores M, GĂłmez-AlarcĂłn G (2000) Evaluation of the effect of some biocides against organisms isolated from historic monuments. Aerobiologia 16:423–428Boquet E, Boronat A, Ramos-Cormenzana A (1973) Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246:527–529Borgioli L, Giovannoni F, Giovannoni S (2001) A new supportante in the frescoes sector: carbogel. Kermes 44 (14):63-68. ISSN: 1122-3197Bosch-Roig P, Ranalli G (2014) The safety of biocleaning technologies for cultural heritage. Front Microbiol. doi: 10.3389/fmicb.2014.00155Bosch-Roig P, Regidor-Ros JL, Soriano-Sancho P, Domenech-Carbo MT, Montes-Estelles RM (2010) Ensayos de biolimpieza con bacterias en pinturas murales. ArchĂ© 4-5:115–124, ISBN: 1887-3960Bosch-Roig P, Montes-EstellĂ©s RM, Regidor-Ros JL, Roig-Picazo P, Ranalli G (2012) New frontiers in the microbial bio-cleaning of artworks. The Picture Restorer 41:37-41. ISSN: 0964 9662Bosch-Roig P, Regidor-Ros JL, Soriano-Sancho P, Montes-EstellĂ©s RM (2013a) Biocleaning of animal glue on wall paintings by Pseudomonas stutzeri. Chim Oggi/Chem Today 31(1):50–53Bosch-Roig P, Regidor-Ros JL, Montes-EstellĂ©s R (2013b) Biocleaning of nitrate alterations on wall paintings by Pseudomonas stutzeri. Int Biodeterior Biodegrad 84:266–274Brimblecombe P, Grossi CM (2007) Damage to buildings from future climate and pollution. APT Bulletin 38 (2–3):13–18. ISSN: 0848-8525Camuffo D (1998) Microclimate for Cultural Heritage. Elsevier, Amsterdam, p 415Caneva G, Salvadori O, Ricci S, Ceschin S (2005) Ecological analysis and biodeterioration processes over time at the Hieroglyphic Stairway in the CopĂĄn (Honduras) archaeological site. Plant Biosystems 139(3):295–310Cappitelli F, Zanardini E, Toniolo L, Abbruscato P, Ranalli G, Sorlini C (2005) Bioconservation of the marble base of the PietĂ  Rondanini by Michelangelo Buonarroti. Geophys Res Abstr 7:06675-00676. ISSN: 1607-7962. SRef-ID: 1607-7962/gra/EGU05-A-06675Cappitelli F, Zanardini E, Ranalli G, Mello E, Daffonchio D, Sorlini C (2006) Improved methodology for bioremoval of black crusts on historical stone artworks by use of sulfate-reducing bacteria. Appl Environ Microbiol 72:3733–3737Cappitelli F, Toniolo L, Sansonetti A, Gulotta D, Ranalli G, Zanardini E, Sorlini C (2007) Advantages of using microbial technology over traditional chemical technology in the removal of black crusts from stone surfaces of historical monuments. Appl Environ Microbiol 73:5671–5675Casoli A, Cremonesi P, Isca C, Groppetti R, Pini S, Senin N (2013) Evaluation of the effect of cleaning on the morphological properties of ancient paper surface. Cellulose 20(4):2027–2043Castanier S, Le Metayer-Levrel G, Orial G, Loubiere JF, Perthuisot JP (2000) Carbonatogenesis and applications to preservation and restoration of historic property. In: Ciferri O, Tiano P, Mastromei G (eds) Of Microbes and Art. Kluwer Academic/Plenum Publishers, Amsterdam, pp 203–218Cremonesi P (2002) L’uso degli enzimi nella pulitura di opere policrome. Il Prato, PadovaCremonesi P (2004) The Use of Organic Solvents in the Cleaning of Polychrome. I Talenti 7. Il Prato, PadovaCremonesi P (2013) Rigid gels and enzyme cleaning. In: Mecklenburg M F, Charola A E, Koestler R J (eds) New insights into the cleaning of paintings. Smithsonian Institution Scholary Press, Washington D.C. pp 179-183. ISBN: 1949-2359 (print); 1949-2367 (online)Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci U S A 99:10494–10499De Belie N, De Graef B, De Muynck W, Dick J, De Windt W, Verstraete W (2005) Biocatalytic processes on concrete: bacterial cleaning and repair. Proceedings of the 10th International Conference on Durability of Building Materials and Components, Lyon, pp 95-103De Graef B, De Windt W, Dick J, Verstraete W, De Belie N (2005) Cleaning of concrete fouled by lichens with the aid of Thiobacilli. Mater Struct 38:875–882. doi: 10.1007/BF02482254De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36(2):118–36Doehne E, Price CA (2010) Stone Conservation. An overview of Current Research. The Getty Conservation Institute, Los Angeles, p 175. ISBN 978-1-60606-046-9Dornieden T, Gorbushina AA, Krumbein WE (2000) Biodecay of cultural heritage as a space/time-related ecological situation an evaluation of a series of studies. Int Biodeterior Biodegrad 46:261–270Duthie L, Hyslop E, Kennedy C, Phoenix V, Lee MR (2008) Quantitative assessment of decay mechanisms in Scottish building sandstones. In: Lukaszewicz JW, Niemcewicz P (eds) Proceedings of the 11th international congress on deterioration and conservation of stone. Torun, Poland, pp 73–80Fassina V (2000) Proceedings of the 9th international congress on deterioration and conservation of stone. Fassina V (ed) Elsevier, Amsterdam, p 661. ISBN: 0444505172Ferrer MR, Quevedo-Sarmiento J, Rivadeneira MA, Bejar V, Delgadoand R, Ramos-Cormenzana A (1988) Calcium carbonate precipitation by two groups of moderately halophilic microorgenisms at different temperatures and salt concentrations. Curr Microbiol 17:221–227Gauri KL, Chowdhury AN, Kulshreshtha NP, Punuru AR (1989) The sulfation of marble and the treatment of gypsum crusts. Stud Conserv 34:201–206Gauri KL, Parks L, Jaynes J, Atlas R (1992) Removal of sulfated-crusts from marble using sulphate-reducing bacteria. In: Webster RGM (ed) Proceedings of the International conference on stone cleaning and the nature, soiling and decay mechanisms of stone. Donheadd, Edinburgh, pp 160–165GioventĂč E, Lorenzi PF, Villa F, Sorlini C, Rizzi M, Cagnini A, Griffo A, Cappitelli F (2011) Comparing the bioremoval of black crusts on colored artistic lithotypes of the Cathedral of Florence with chemical and laser treatment. Int Biodeterior Biodegrad 65:832–839GĂłmez-AlarcĂłn G and SĂĄiz-JimĂ©nez C (2013) Biodeterioro de monumentos y biorremediaciĂłn: estado actual y perspectivas futuras. An Real Acad Farm 79 (4):562-579. ISBN: 1697-4271. Online journal: http://www.ranf.comGorel F (2010) Assessment of agar gel loaded with micro-emulsion for the cleaning of porous surfaces. CeROArt electronic journal. http://ceroart.revues.org/1827 . Accessed 10 June 2014Grossi CM, Brimblecombe P, MenĂ©ndez B, Benavente D, Harris I (2008) Long term change in salt weathering of stone monuments in north-west France. In: Lukaszewicz JW, Niemcewicz P (eds) Proceedings of the 11th international congress on deterioration and conservation of stone. Torun, Poland, pp 121–28Gulotta D, Saviello D, Gherardi F, Toniolo L, Anzani M, Rabbolini A and Goidanich S (2014) Setup of a sustainable indoor cleaning methodology for the sculpted stone surfaces of the Duomo of Milan. Heritage Science 2:6-19. http://www.heritagesciencejournal.com/content/2/1/6Heselmeyer K, Fischer U, Krumbein WE, Warsheid T (1991) Application of Desulfovibrio vulgaris for the bioconversion of rock gypsum crusts into calcite. Bioforum 1:89Hesse W, Hesse A (1992) Early contributors to bacteriology. ASM News 58:425–428Iannuccelli S, Sotgiu S (2010) Wet treatments of works of art on paper with rigid gellan gels. BPG Annual 29:25-39. Online version: http://cool.conservation-us.org/coolaic/sg/bpg/annual/v29/index.htmlIannucelli S, Sotgiu S (2009) La pulitura superficiale di opera grafiche a stampa con gel rigidi. Progetto Restauro, Il Prato, Padova 49:15–24, 978-88-6336-143-8Lustrato G, Alfano G, Andreotti A, Colombini MP, Ranalli G (2012) Fast biocleaning of mediaeval frescoes using viable bacterial cells. Int Biodeterior Biodegrad 69:51–61Maier RM, Pepper IL, Gerba CP (2000) Environmental microbiology. Elsevier, San Diego, p 585. ISBN 0124975704Martin-Sanchez PM, NovĂĄkovĂĄ A, Bastian F, Alabouvette C, Saiz-Jimenez C (2012) Use of biocides for the control of fungal outbreaks in subterranean environments: The case of the Lascaux Cave in France. Environ Sci Technol 46:3762–3770May E, Webster AM, Inkpen R, Zamarreño D, Kuever J, Rudolph C, Warscheid T, Sorlini C, Cappitelli F, Zanardini E, Ranalli G, Krage L, Vgenopoulos A, Katsinis D, Mello E, Malagodi M (2008) The BIOBRUSH project for bioremediation of Heritage stone. In: May E, Jones M, Mitchell J (eds) Heritage Microbiology and Science. Microbes, Monuments and maritime materials. RSC Publishing, Cambridge, pp 76–93, ISB: 9780854041411Medina-Esquivel R, Freile-Pelegrin Y, Quintana-Owen P, Yåñez-LimĂłn JM, Alvarado-Gil JJ (2008) Measurement of the sol–gel transition temperature in agar. Int J Thermophys 29(6):2036–2045Neelakanta G, Sultana H (2013) The use of metagenomic approaches to analyze changes in microbial communities. Microbiol Insights 6:37–48. doi: 10.4137/MBI.S10819Nualart-Torroja A, Oriola-Folch M, Mascarella-Vilageliu M (2013) Cleaning issues for nine Francesc Artigau pop art paintings. In: Mecklenburg MF, Charola AE, Koestler RJ (eds) New Insights into the Cleaning of Paintings. Smithsonian Institution Scholary Press, Washington D.C., pp 175–177. ISBN: 1949-2359Orial G, Castanier S, Le Metayer G, Loubiere JF (1993) The mineralization: a new process to protect calcareous stone applied to historic monuments. In: Ktoishi H, Arai T, Yamano K (eds) Proceedings of the 2nd International Conference on Biodeterioration of Cultural Property, Tokyo, pp 98-116Pernodet N, Maaloum M, Tinland B (1997) Pore size of agarose gels by atomic force microscopy. Electrophoresis 18(1):55–58Pietropolli A (2001) Salute e Restauro. Quaderni di Progetto Restauro 3. Il prato, PadovaPinna D, Salvadori O (2008) Biodeterioration processes in relation to cultural heritage materials. Stone and related materials. In: Caneva G, Nugari MP, Salvatori O (eds) Plant Biology for Cultural Heritage. Biodeterioration and conservation. Getty Publications, Los Angeles, pp 128–149. ISBN 9780892369393Polo A, Cappitelli F, Brusetti L, Principi P, Villa F, Giacomucci L, Ranalli G, Sorlini C (2010) Feasibility of removing surface deposits on stone using biological and chemical remediation methods. Microb Ecol 60:1–14Praiboon J, Chirapart A, Akakabe Y, Bhumibhamond O, Kajiwarac T (2006) Physical and chemical characterization of agar polysaccharides extracted from the Thai and Japanese species of Gracilaria. Sci Asia 32:11–17Raimondi V, Andreotti A, Cecchi A, Cecchi G, Colombini MP, Cucci C, Cuzman O, Fornacelli C, Galeotti M, Gambineri F, Gomoiu I, Lognoli D, Mohanu D, Palombi L, Penoni S, Picollo M, Pinna D, Tiano P (2013) A study to investigate the potential of hyperspectral fluorescence lidar imaging of biodeteriogens on mural paintings. In: Strlic M, Korenberg C, Luxford N, Birkhölzer K (eds) Saunders D. Lacona IX Lasers in the Conservation of Artworks, London, pp 140–145Rampazzi L, Giussani B, Biagio R, Corti C, Pozzi A, Dossi C (2011) Monuments as sampling surfaces of recent traffic pollution. Environ Sci Pollut Res 18:184–191Ranalli G, Chiavarini M, Guidetti V, Marsala F, Matteini M, Zanardini E, Sorlini C (1996a) Utilisation of microorganisms for the removal of sulphates on artistic stoneworks. 3rd Int Biodeterior Biodegrad Symposium, Sociedad Española de MicrobiologĂ­a, Santiago de Compostela, pp 59-60Ranalli G, Chiavarini M, Guidetti V, Marsala F, Matteini M, Zanardini E, Sorlini C (1996b) The use of microorganisms for the removal of nitrates and organic substances on artistic stoneworks. In: Riederer J (ed) Proceedings of the 8th International Congress of Deterioration and Conservation of Stone. Möller, Berlin, pp 1415–1420Ranalli G, Chiavarini M, Guidetti V, Marsala F, Matteini M, Zanardini E, Sorlini C (1997) The use of microorganisms for the removal of sulfates on artistic stoneworks. Int Biodeterior Biodegrad 40(2–4):255–261Ranalli G, Matteini M, Tosini I, Zanardini E, Sorlini C (2000) Bioremediation of cultural heritage: removal of sulphates, nitrates and organic substances. In: Ciferri O, Tiano P, Mastromei G (eds) Of Microbes and Art. Kluwer Academic/Plenum Publishers, New York, The Role of Microbial Communities in the Degradation and Protection of Cultural Heritage, pp 231–245. ISBN 0306463776Ranalli G, Belli C, Baracchini C, Caponi G, Pacini P, Zanardini E, Sorlini C (2003) Deterioration and bioremediation of frescoes: A case-study. In: Saiz-Jimenez C (ed) Molecular Biology and Cultural Heritage. Balkema Publishers, Netherlands, pp 243–246. ISBN 905809555×Ranalli G, Alfano G, Belli C, Lustrato G, Colombini MP, Bonaduce I, Zanardini E, Abbruscato P, Cappitelli F, Sorlini C (2005) Biotechnology applied to cultural heritage: biorestoration of frescoes using viable bacterial cells and enzymes. J Appl Microbiol 98:73–83Ranalli G, Zanardini E, Sorlini C (2009) Biodeterioration including Cultural Heritage. In: Schaechter M (ed) Enciclopedia of Microbiology, 3rd edn. Elsevier, Oxford, pp 191–205Rivadeneyra MA, Delgado R, Quesada E, Ramos-Cormenzana A (1991) Precipitation of calcium carbonate by Deleya halophila in media containing NaCl as sole salt. Curr Microbiol 22:185–190Rivadeneyra MA, Delgado R, del Moral A, Ferrer MR, Ramos-Cormenzana A (1994) Precipitation of calcium carbonate by Vibrio spp. From an inland saltern. FEMS Microbiol Ecol 13:197–204Rodriguez-Navarro C, Rodriguez-Gallego M, Ben Chekroun K, Gonzales-Munoz MT (2000) Carbonate production by Mixococcus xantus: a possible application to protect/consolidate calcareous stones. Proceeding of the International Congress Quarry, Laboratory, Monument, Pavia, pp 493–498Saiz-Jimenez C (1997) Biodeterioration vs biodegradation: the role of microorganisms in the Removal of pollutants deposited on to historic buildings. Int Biodeterior Biodegr 40:225–232Saiz-Jimenez C (2001) The biodeterioration of building materials. In: Stoecker J (ed) A Practical Manual on Microbiologically Influenced Corrosion, vol 2. NACE, Houston, pp 4.1–4.20Saiz-Jimenez C (2003) Organic pollutants in the built environment and their effect on the microoorganisms. In: Brimblecombe P (ed) The Effects of Air Pollution on the Built Environment. Air Pollution Reviews vol.2. Imperial College Press, London, pp 183–225Saiz-Jimenez C (2004) Air Pollution and Cultural Heritage. Proceedings of the International Workshop on Air Pollution and Cultural Heritage, Seville, Spain. Leiden and New York: Balkema.Salimbeni R, Pini R, Siano S (2003) A variable pulse width Nd: YAG laser for conservation. J Cult Herit 4(1):72–76Salvadori O, Realini M (1996) Characterization of biogenic oxalate films. In: Realini M, Toniolo L (eds) Proceedings of the 2nd international Symposium: The Oxalate Films in the Conservation of Works of Art. Editream, Milan, pp 335–351SanmartĂ­n P, Villa F, Polo A, Silva B, Prieto B, Cappitelli F (2014) Rapid evaluation of three biocide treatments against the cyanobacterium Nostoc sp. PCC 9104 by color changes. Ann Microbiol. doi: 10.1007/s13213-014-0882-3Sansonetti A, Casati M, Striova J, Canevali C, Anzani M, Rabbolini A (2012) A Cleaning Method Based on the Use of Agar Gels: New Tests and Perspectives. In: 12th International congress on the deterioration and conservation of stone. New YorkSantoro M, Marchetti P, Rossi F, Perale G, Castiglione F, Mele A, Masi M (2011) Smart approach to evaluate drug diffusivity in injectable agar-carbomer hydrogels for drug delivery. J Phys Chem B 115(11):2503–2510Scherer GW (2000) Stress from crystallization of salt pores. In: Fassina V (ed) Proceedings of the 9th International Congress on Deterioration and Conservation of Stone. Elsevier, Amsterdam, pp 187–194Shaeffer E, Gardiner J (2013) New and Current Materials and Approaches for Localized Cleaning in Textile Conservation. In: 41st AIC annual meeting-the contemporary in conservation, Indianapolis, IndianaSorlini C, Ranalli G, Zanardini E (2010a) Stone Bioconservation. In: Mitchell R, McNamara CJ (eds) Cultural Heritage Microbiology: fundamental Studies in Conservation Science. ASM Press, Washington, DC, pp 291–303Sorlini C, Cappitelli F, Zanardini E, Ranalli G (2010b) Procedimento di biopulitura di superfici di manufatti di diversa natura chimica ed edifici. UniversitĂ  degli Studi di Milano & UniversitĂ  degli Studi del Molise, Italian Patent, 0001374216Tiano P, Tosini I, Rizzi M, Tsakoma M (1996) Calcium oxalate decomposing microorganisms: A biological approach to the oxalate patinas elimination. In: Realini M, Toniolo L (eds) Proceedings of the 2nd International Symposium: The Oxalate Films in the Conservation of Works of Art. Editream, Milan, pp 25–27Tortajada Hernando S, Blanco DomĂ­nguez MM (2013) Cleaning plaster surfaces with agar-agar gels: evaluation of the technique. In: Grupo Español de ConservaciĂłn (ed) Ge-conservaciĂłn N.4, Madrid, pp 111-126. ISSN: 1989-8568. http://www.ge-iic.com/ojs/index.php/revista/article/view/153Troiano F, Gulotta D, Balloi A, Polo A, Toniolo L, Lombardi E, Daffonchio D, Sorlini C, Cappitelli F (2013) Successful combination of chemical and biological treatments for the cleaning of stone artworks. Int Biodeterior Biodegrad 85:294–304Valentini F, Diamanti A, Palleschi G (2010) New bio-cleaning strategies on porous building materials affected by biodeterioration event. Appl Surf Sci 256:6550–6563VergĂšs-Belmin V (1996) Towards a definition of common evaluation criteria for the cleaning of porous building materials: a review. Sci Tech Cult Heritage 5:69–83Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegrad 46:343–368Wolbers RC (2000) Cleaning painted surfaces. Archetype Publications Ltd, London, Aqueous Methods, p 198. ISBN 1873132360Zanardini E, Abbruscato P, Ghedini N, Realini M, Sorlini C (2000) Influence of atmospheric pollutants on the biodeterioration of stone. Int Biodeterior Biodegrad 45:35–4

    Advanced Biocleaning System for Historical Wall Paintings

    No full text
    AbstractThis chapter will focus on the potential role of safe microorganisms as biocleaning agents in the removal of altered or undesirable organic substances on historical wall paintings. Selected microbes can be adopted as biological cleaners to reduce and remove deterioration ageing phenomena, environmental pollutants and altered by-products of past intervention of restorations. The aim is to offer a comprehensive view on the role and potentiality of virtuous microorganisms pro- biocleaning of altered historical wall paintings. We also report four case studies in the CH restoration field, carried out in the last 25 years, with the innovative use of bacteria and different delivery systems, focusing the attention on the preliminary diagnosis and the monitoring of the whole process. The CH field represents a great challenge and Science and Art link together the work of conservator scientists and historians with researchers and scientists, sharing their diverse expertises and joining the knowledges to the preservation and the conservation of our artistic patrimony

    The Role of Microorganisms in the Removal of Nitrates and Sulfates on Artistic Stoneworks

    No full text
    AbstractThis chapter will focus on the role of microorganisms in the removal of nitrates and sulfates on artistic stoneworks. The main groups of microbes and their metabolisms involved in bioremoval methods for the preservation and protection of cultural artifacts are reported. The aim is to offer a comprehensive view on the role and potentiality of virtuous microorganisms in the biocleaning and bioremoval of black crusts and salts altering CH stoneworks. We highlight the importance of the use of the selected microorganisms and the adoption of adequate carriers for the anaerobic metabolism of nitrate and sulfate reducers to be applied on the altered stone surfaces. The following characteristics of the delivery system are of great importance: the ability to guarantee water content for microbes, the absence of toxicity for the environment, no negative effects to the stone surfaces, easy to prepare, to apply, and to remove from different stone surfaces at the end of the treatment. We report an overview of the last 30 years on the biocleaning processes including diagnostic studies of the alterations, the assessment of associated risks, the effectiveness and efficacy of the proposed method, and the evaluation in terms of economic and environmental sustainability

    Improved Methodology for Bioremoval of Black Crusts on Historical Stone Artworks by Use of Sulfate-Reducing Bacteria

    Get PDF
    An improved methodology to remove black crusts from stone by using Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, a sulfate-reducing bacterium, is presented. The strain removed 98% of the sulfates of the crust in a 45-h treatment. Precipitation of black iron sulfide was avoided using filtration of a medium devoid of iron. Among three cell carriers, Carbogel proved to be superior to both sepiolite and Hydrobiogel-97, as it allowed an easy application of the bacteria, kept the system in a state where microbial activity was maintained, and allowed easy removal of the cells after the treatment
    corecore