205 research outputs found

    Optimal state estimation for d-dimensional quantum systems

    Get PDF
    We establish a connection between optimal quantum cloning and optimal state estimation for d-dimensional quantum systems. In this way we derive an upper limit on the fidelity of state estimation for d-dimensional pure quantum states and, furthermore, for generalized inputs supported on the symmetric subspace.Comment: 3 page

    Berry phase in open quantum systems: a quantum Langevin equation approach

    Full text link
    The evolution of a two level system with a slowly varying Hamiltonian, modeled as s spin 1/2 in a slowly varying magnetic field, and interacting with a quantum environment, modeled as a bath of harmonic oscillators is analyzed using a quantum Langevin approach. This allows to easily obtain the dissipation time and the correction to the Berry phase in the case of an adiabatic cyclic evolution.Comment: 6 pages, no figures. Published versio

    Electrochemical preparation and characterisation of bilayer films composed by Prussian Blue and conducting polymer

    Get PDF
    Preparation and electrochemical behaviour of bilayer films consisting of iron(Ill) hexacyanoferrate, well known as Prussian Blue, and of poly[4,4´-bis(butylsulphanyl)-2,2´-bithiophene], on a platinum electrode, are reported. The electrochemical features of the Prussian Blue/conducting polymer bilayer system are examined in aqueous and acetonitrile solutions. Cyclic voltammetric studies show that, in acetonitrile solvent, the inner layer Prussian Blue is electroactive to some extent, though the electrochemical response of the system is mainly accounted for by poly[4,4´-bis(butylsulphanyl)-2,2´-bithiophene] outer layer. On the other hand, in aqueous solution Prussian Blue exhibits good electroactivity. Under specific experimental conditions, the individual redox behaviour of each constituent of the bilayer is evidenced in the two solvents separately, i.e., that of PB and that of poly[4,4´-bis(butylsulphanyl)-2,2´bithiophene] in aqueous and in organic solvent, respectively. However, interesting reciprocal influences are evident in the current/potential curves recorded under conditions which are discussed

    Development of a redox polymer based on poly(2-hydroxyethyl methacrylate)for disposable amperometric sensors

    Get PDF
    Membranes based on poly(2-hydroxyethyl methacrylate), chemically modified with ferrocene functionalities, are proposed as novel coatings for the development of disposable amperometric sensors. They are mass-produced on an inert support through an UV photo-induced polymerization, forming self-standing films that can be transferred on an electrode surface. Thanks to the characteristic of the functionalized methacrylate matrix to rapidly and reversibly swell by incorporation of large amounts of water, the ferrocene moieties are in intimate contact with the electrolytic solution. They can activate effective electrocatalytic processes that can be exploited in the field of amperometric sensing. The performance of the methacrylate coating with respect to the determination of hydroquinone benchmark analyte has been tested both in a static solution and in a flux cell

    Sport: A Possible Road toward Social Inclusion and Quality of Life

    Get PDF
    Sport is a universal language, recognized and shared by all. A psychiatric users Association, in collaboration with public Mental Health Department and UISP, Italian Union Promoting Sport for All, proposes the sport as one of the possible strategies within a wider therapeutic project for schizophrenia. Soft gymnastic, swimming, football, and volley are observed from the point of view of users, main recipients of the intervention, trainers, and referees. The perceived quality of life was measured in the users/athletes, using the WHOQOL-brief schedule. To practice sport enhances the adhesion to treatment and the quality of life and can reduce hospitalizations. It is a useful tool for promoting well-being, personal autonomy and an active lifestyle, preventing isolation, and improving self-esteem and social cognition. It may be an important factor preventing poor functional outcome and promoting recovery. Team sports seem to have a greater therapeutic value, producing fun, cohesion, and social inclusion; they can also play an important educational role, preventing social stigma

    miniaturized fish for screening of onco hematological malignancies

    Get PDF
    Fluorescence in situ hybridization (FISH) represents a major step in the analysis of chromosomal aberrations in cancer. It allows the precise detection of specific rearrangements, both for diagnost..

    Pirin delocalization in melanoma progression identified by high content immuno-detection based approaches

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pirin (PIR) is a highly conserved nuclear protein originally isolated as an interactor of NFI/CTF1 transcription/replication factor. It is a member of the functionally diverse cupin superfamily and its activity has been linked to different biological and molecular processes, such as regulation of transcription, apoptosis, stress response and enzymatic processes. Although its precise role in these functions has not yet been defined, PIR expression is known to be deregulated in several human malignancies.</p> <p>Results</p> <p>We performed immunohistochemical analysis of PIR expression in primary samples from normal human tissues and tumors and identified a dislocation of PIR to the cytoplasm in a subset of melanomas, and a positive correlation between cytoplasmic PIR levels and melanoma progression. PIR localization was subsequently analyzed <it>in vitro </it>in melanoma cell lines through a high content immunofluorescence based approach (ImmunoCell-Array).</p> <p>Conclusions</p> <p>The high consistency between <it>in vivo </it>and <it>in vitro </it>results obtained by immunohistochemistry and ImmunoCell-Array provides a validation of the potential of ImmunoCell-Array technology for the rapid screening of putative biological markers, and suggests that cytoplasmic localization of PIR may represent a characteristic of melanoma progression.</p

    Systematic study of the correlation between surface chemistry, conductivity and electrocatalytic properties of graphene oxide nanosheets

    Get PDF
    A main advantage of graphene oxide (GO) over other materials is the high tunability of its surface functional groups and of its electric conductivity. However, the complex chemical composition of GO renders difficult to unravel the correlation between structural and electric properties. Here, we use a combination of electron spectroscopy and electrochemistry to correlate the surface chemistry of GO to its electrical conductivity and electrocatalytic properties with respect to two molecules of high biological interest: β-nicotinamide adenine dinucleotide (NADH) and vitamin C. We demonstrate that the electrocatalytic properties of the material are due to hydroxyl, carbonyl and carboxyl groups residues that, even if already present on pristine GO, become electroactive only upon GO reduction. The results of this study demonstrate the advantages in the use of GO in amperometric biosensing and in enzymatic biofuel cells: it allows the oxidation of the target molecules at low potential values, with a sensitivity &gt;15 times higher with respect to standard, carbon-based electrode materials. Finally, we demonstrate that the right amount of chemical groups to achieve such high performance can be obtained also by direct electrochemical exfoliation of bulk graphite, without passing through GO production, thus rendering this approach suitable for cheap, large-scale applications

    A Flexible Platform of Electrochemically Functionalized Carbon Nanotubes for NADH Sensors

    Get PDF
    A flexible electrode system entirely constituted by single-walled carbon nanotubes (SWCNTs) has been proposed as the sensor platform for -nicotinamide adenine dinucleotide (NADH) detection. The performance of the device, in terms of potential at which the electrochemical process takes place, significantly improves by electrochemical functionalization of the carbon-based material with a molecule possessing an o-hydroquinone residue, namely caffeic acid. Both the processes of SWCNT functionalization and NADH detection have been studied by combining electrochemical and spectroelectrochemical experiments, in order to achieve direct evidence of the electrode modification by the organic residues and to study the electrocatalytic activity of the resulting material in respect to functional groups present at the electrode/solution interface. Electrochemical measurements performed at the fixed potential of +0.30 V let us envision the possible use of the device as an amperometric sensor for NADH detection. Spectroelectrochemistry also demonstrates the effectiveness of the device in acting as a voltabsorptometric sensor for the detection of this same analyte by exploiting this different transduction mechanism, potentially less prone to the possible presence of interfering species.FEDER and both the Spanish Ministerio de Economía y Competitividad (Grants CTQ2017-83935-R-AEI/FEDER-UE) and the Consejería de Educación -Junta de Castilla y León- (Grant BU297P18). Jesus Garoz-Ruiz thanks Ministerio de Economía y Competitividad for his postdoctoral contracts (CTQ2014-55583-R; CTQ2017-83935-R AEI/FEDER-UE). Fabio Vulcano thanks the ISOF institute of CNR for supporting his PhD Grant. Nicola Porcelli thanks Università di Modena e Reggio Emilia for supporting his stay at the University of Burgos

    Electrochemical Sensing of Caffeic Acid Using Gold Nanoparticles Embedded in Poly(3,4-ethylenedioxythiophene) Layer by Sinusoidal Voltage Procedure

    Get PDF
    The increasing demand for sensitive electrochemical sensors in various medical and industrial applications promotes the fabrication of novel sensing materials with improved electrocatalytic and analytical performances. This work deals with the development of a composite material based on gold nanoparticles (AuNPs) embedded in poly(3,4-ethylenedioxythiophene) (PEDOT) layer for electrochemical determination of caffeic acid (CA). CA is a phenolic compound with excellent antioxidant properties that is present in vegetables, fruits, and alcoholic and non-alcoholic beverages. Its analytical quantification is of great interest in food production monitoring and healthcare applications. Therefore, the development of sensitive analytical devices for CA monitoring is required. The AuNPs have been prepared in situ onto PEDOT coated glassy carbon electrode (GC) by means of an innovative procedure consisting on the use of a sinusoidal voltage (SV) superimposed on a constant potential. The physico-chemical properties of the PEDOT-AuNPs composite material were investigated by a range of techniques including cyclic voltammetry, electrochemical quartz crystal microbalance, and scanning electron microscopy. The glassy carbon electrode/poly(3,4-ethylenedioxythiophene)-gold nanoparticles-sinusoidal voltage (GC/PEDOT-AuNPs-SV) sensor exhibited good analytical performance toward the CA quantification with a linear response over a wide concentration range from 10 &micro;M to 1 mM. In addition, the proposed GC/PEDOT-AuNPs-SV sensor was successfully applied in the determination of total polyphenols content expressed as equivalents of CA in juice samples
    corecore