487 research outputs found

    Disrupted Structural Brain Connectome Is Related to Cognitive Impairment in Patients With Ischemic Leukoaraiosis

    Get PDF
    Ischemic leukoaraiosis (ILA) is related to cognitive impairment and vascular dementia in the elderly. One possible mechanism could be the disruption of white matter (WM) tracts and network function that connect distributed brain regions involved in cognition. The purpose of this study was to investigate the relationship between structural connectome and cognitive functions in ILA patients. A total of 89 patients with ILA (Fazekas score ≄ 3) and 90 healthy controls (HCs) underwent comprehensive neuropsychological examinations and diffusion tensor imaging scans. The tract-based spatial statistics approach was employed to investigate the WM integrity. Graph theoretical analysis was further applied to construct the topological architecture of the structural connectome in ILA patients. Partial correlation analysis was used to investigate the relationships between network measures and cognitive performances in the ILA group. Compared with HCs, the ILA patients showed widespread WM integrity disruptions. The ILA group displayed increased characteristic path length (Lp) and decreased global network efficiency at the level of the whole brain relative to HCs, and reduced nodal efficiencies, predominantly in the frontal–subcortical and limbic system regions. Furthermore, these structural connectomic alterations were associated with cognitive impairment in ILA patients. The association between WM changes (i.e., fractional anisotropy and mean diffusivity measures) and cognitive function was mediated by the structural connectivity measures (i.e., local network efficiency and Lp). In conclusion, cognitive impairment in ILA patients is related to microstructural disruption of multiple WM fibers and topological disorganization of structural networks, which have implications in understanding the relationship between ILA and the possible attendant cognitive impairment

    Overexpression of eIF-5A2 in mice causes accelerated organismal aging by increasing chromosome instability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amplification of 3q26 is one of the most frequent genetic alterations in many human malignancies. Recently, we isolated a novel oncogene <it>eIF-5A2 </it>within the 3q26 region. Functional study has demonstrated the oncogenic role of <it>eIF-5A2 </it>in the initiation and progression of human cancers. In the present study, we aim to investigate the physiological and pathological effect of <it>eIF-5A2 </it>in an <it>eIF-5A2 </it>transgenic mouse model.</p> <p>Methods</p> <p>An <it>eIF-5A2 </it>transgenic mouse model was generated using human <it>eIF-5A2 </it>cDNA. The <it>eIF-5A2 </it>transgenic mice were characterized by histological and immunohistochemistry analyses. The aging phenotypes were further characterized by wound healing, bone X-ray imaging and calcification analysis. Mouse embryo fibroblasts (MEF) were isolated to further investigate molecular mechanism of <it>eIF-5A2 </it>in aging.</p> <p>Results</p> <p>Instead of resulting in spontaneous tumor formation, overexpression of eIF-5A2 accelerated the aging process in adult transgenic mice. This included decreased growth rate and body weight, shortened life span, kyphosis, osteoporosis, delay of wound healing and ossification. Investigation of the correlation between cellular senescence and aging showed that cellular senescence is not required for the aging phenotypes in <it>eIF-5A2 </it>mice. Interestingly, we found that activation of <it>eIF-5A2 </it>repressed p19 level and therefore destabilized p53 in transgenic mouse embryo fibroblast (MEF) cells. This subsequently allowed for the accumulation of chromosomal instability, such as errors in cell dividing during metaphase and anaphase. Additionally, a significantly increase in number of aneuploidy cells (<it>p </it>< 0.05) resulted from an increase in the incidences of misaligned and lagging chromosomal materials, anaphase bridges, and micronuclei in the transgenic mice.</p> <p>Conclusion</p> <p>These observations suggest that <it>eIF-5A2 </it>mouse models could accelerate organismal aging by increasing chromosome instability.</p

    Transcriptome sequencing and comparative analysis of adult ovary and testis identify potential gonadal maintenance-related genes in Mauremys reevesii with temperature-dependent sex determination

    Get PDF
    Mauremys reevesii is a classical organism with temperature-dependent sex determination (TSD). Gonad development in early life has recently received considerable attention but gonadal maintenance after sex differentiation in turtles with TSD remains a mystery. In this study, we sequenced the transcriptomes for the adult testis and ovary using RNA-seq, and 36,221 transcripts were identified. In total, 1,594 differentially expressed genes (DEGs) were identified where 756 DEGs were upregulated in the testis and 838 DEGs were upregulated in the ovary. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that the TGF-beta signaling pathway and Hedgehog signaling pathway have important roles in testis maintenance and spermatogenesis, whereas the Hippo signaling pathway and Wnt signaling pathway are likely to participate in ovary maintenance. We determined the existence of antagonistic networks containing significant specific-expressed genes and pathways related to gonadal maintenance and gametogenesis in the adult gonads of M. reevesii. The candidate gene Fibronectin type 3 and ankyrin repeat domains 1 (FANK1) might be involved with the regulation of testis spermatogenesis

    Early postoperative calcitonin-to-preoperative calcitonin ratio as a predictive marker for structural recurrence in sporadic medullary thyroid cancer: A retrospective study

    Get PDF
    BackgroundCalcitonin (Ctn) is widely used as a marker in the diagnosis, prognosis, and postoperative follow-up of patients with medullary thyroid carcinoma (MTC). The prognostic value of postoperative calcitonin-to-preoperative calcitonin ratio (CR), reflecting the change in Ctn level of response to initial treatment, remains uncertain in long-term disease outcomes. This study aims to determine the cut-off value of CR for predicting structural recurrence and assess the prognostic role of CR in patients with MTC.MethodsWe retrospectively reviewed patients with MTC in Sun Yat-sen University Cancer Center (SYSUCC) between 2000 and 2022. CR is defined as the ratio of postoperative Ctn level on the day of discharge divided by preoperative Ctn level. In order to determine the optimal cut-off value of CR, the receiver operating characteristic (ROC) analysis was performed. We evaluate the effect of CR on recurrence-free survival (RFS) by using the Kaplan-Meier method and Cox regression analysis. Then, a nomogram based on CR was constructed.ResultsIn total, 112 sporadic MTC patients were included in this study. The optimal cut-off value of CR that predicted disease recurrence was 0.125. Patients with CR≄0.125 showed significantly worse RFS than patients with CR &lt;0.125, respectively (3-years RFS rate of 63.1 vs. 94.7%, 5-years RFS rate of 50.7 vs. 90.3%, P &lt; 0.001). In the multivariate analysis, CR was the strongest independent predictor of structural recurrence (HR: 5.050, 95% CI: 2.247–11.349, P &lt;0.001). Tumor size (HR: 1.321, 95% CI: 1.010–1.726, P =0.042), multifocality (HR: 2.258, 95% CI: 1.008–5.058, P =0.048) and metastasized lymph nodes (HR: 3.793, 95% CI: 1.617–8.897, P &lt;0.001) were also independent predictors of structural recurrence. The uncorrected concordance index (c-index) of the nomogram was 0.827 (95% CI, 0.729-0.925) for RFS, and bias-corrected c-index were similar. As compared to TNM stage, the nomogram based on CR provided better discrimination accuracy.ConclusionsWe demonstrate that CR is a strong prognostic marker to predict structural recurrence in patients with sporadic MTC. The nomogram incorporating CR provided useful prediction of RFS for patients with sporadic MTC to provide personalized treatment

    A Protective Role by Interleukin-17F in Colon Tumorigenesis

    Get PDF
    Interleukin-17F (IL-17F), produced by Th17 cells and other immune cells, is a member of IL-17 cytokine family with highest homology to IL-17A. IL-17F has been shown to have multiple functions in inflammatory responses. While IL-17A plays important roles in cancer development, the function of IL-17F in tumorigenesis has not yet been elucidated. In the current study, we found that IL-17F is expressed in normal human colonic epithelial cells, but this expression is greatly decreased in colon cancer tissues. To examine the roles of IL-17F in colon cancer, we have used IL-17F over-expressing colon cancer cell lines and IL-17F-deficient mice. Our data showed decreased tumor growth of IL-17F-transfected HCT116 cells comparing to mock transfectants when transplanted in nude mice. Conversely, there were increased colonic tumor numbers and tumor areas in Il-17f−/− mice than those from wild-type controls after colon cancer induction. These results indicate that IL-17F plays an inhibitory role in colon tumorigenesis in vivo. In IL-17F over-expressing tumors, there was no significant change in leukocyte infiltration; instead, we found decreased VEGF levels and CD31+ cells. While the VEGF levels were increased in the colon tissues of Il-17f−/− mice with colon cancer. Together, our findings demonstrate a protective role for IL-17F in colon cancer development, possibly via inhibiting tumor angiogenesis

    Roles of MAPK and Spindle Assembly Checkpoint in Spontaneous Activation and MIII Arrest of Rat Oocytes

    Get PDF
    Rat oocytes are well known to undergo spontaneous activation (SA) after leaving the oviduct, but the SA is abortive with oocytes being arrested in metaphase III (MIII) instead of forming pronuclei. This study was designed to investigate the mechanism causing SA and MIII arrest. Whereas few oocytes collected from SD rats at 13 h after hCG injection that showed 100% of mitogen-activated protein kinase (MAPK) activities activated spontaneously, all oocytes recovered 19 h post hCG with MAPK decreased to below 75% underwent SA during in vitro culture. During SA, MAPK first declined to below 45% and then increased again to 80%; the maturation-promoting factor (MPF) activity fluctuated similarly but always began to change ahead of the MAPK activity. In SA oocytes with 75% of MAPK activities, microtubules were disturbed with irregularly pulled chromosomes dispersed over the spindle and the spindle assembly checkpoint (SAC) was activated. When MAPK decreased to 45%, the spindle disintegrated and chromosomes surrounded by microtubules were scattered in the ooplasm. SA oocytes entered MIII and formed several spindle-like structures by 6 h of culture when the MAPK activity re-increased to above 80%. While SA oocytes showed one Ca2+ rise, Sr2+-activated oocytes showed several. Together, the results suggested that SA stimuli triggered SA in rat oocytes by inducing a premature MAPK inactivation, which led to disturbance of spindle microtubules. The microtubule disturbance impaired pulling of chromosomes to the spindle poles, caused spindle disintegration and activated SAC. The increased SAC activity reactivated MPF and thus MAPK, leading to MIII arrest

    Comparison of Infectious Agents Susceptibility to Photocatalytic Effects of Nanosized Titanium and Zinc Oxides: A Practical Approach

    Get PDF

    Blind Thrusting, Surface Folding and the Development of Geological Structure in the Mw 6.3 2015 Pishan (China) Earthquake

    Get PDF
    The relationship between individual earthquakes and the longer-term growth of topography and of geological structures is not fully understood, but is key to our ability to make use of topographic and geological datasets in the contexts of seismic hazard and wider-scale tectonics. Here we investigate those relationships at an active fold-and-thrust belt in the southwest Tarim Basin, Central Asia. We use seismic waveforms and interferometric synthetic aperture radar (InSAR) to determine the fault parameters and slip distribution of the 2015 Mw 6.3 Pishan earthquake - a blind, reverse-faulting event dipping towards the Tibetan Plateau. Our earthquake mechanism and location correspond closely to a fault mapped independently by seismic reflection, indicating that the earthquake was on a pre-existing ramp fault over a depth range of ˜9–13 km. However, the geometry of folding in the overlying fluvial terraces cannot be fully explained by repeated coseismic slip in events such as the 2015 earthquake nor by the early postseismic motion shown in our interferograms; a key role in growth of the topography must be played by other mechanisms. The earthquake occurred at the Tarim-Tibet boundary, with the unusually low dip of 21° . We use our source models from Pishan and a 2012 event to argue that the Tarim Basin crust deforms only by brittle failure on faults whose effective coefficient of friction is ≀0.05±0.025. In contrast, most of the Tibetan crust undergoes ductile deformation, with a viscosity of order 10ÂČ⁰–10ÂČÂČ Pa s. This contrast in rheologies provides an explanation for the low dip of the earthquake fault plane

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb−1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb−1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K−\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1 MeV,m(Ξc(2939)0)=2938.5±0.9±2.3 MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5 MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5 MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K−\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8 σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5 MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8 MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0→Λc+K−\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7 σ3.7\,\sigma. The relative branching fraction of B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the B−→D+D−K−B^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages
    • 

    corecore