75 research outputs found

    Klotho pathways, myelination disorders, neurodegenerative diseases, and epigenetic drugs

    Get PDF
    In this review we outline a rationale for identifying neuroprotectants aimed at inducing endogenous Klotho activity and expression, which is epigenetic action, by definition. Such an approach should promote remyelination and/or stimulate myelin repair by acting on mitochondrial function, thereby heralding a life-saving path forward for patients suffering from neuroinflammatory diseases. Disorders of myelin in the nervous system damage the transmission of signals, resulting in loss of vision, motion, sensation, and other functions depending on the affected nerves, currently with no effective treatment. Klotho genes and their single-pass transmembrane Klotho proteins are powerful governors of the threads of life and death, true to the origin of their name, Fates, in Greek mythology. Among its many important functions, Klotho is an obligatory co-receptor that binds, activates, and/or potentiates critical fibroblast growth factor activity. Since the discovery of Klotho a little over two decades ago, it has become ever more apparent that when Klotho pathways go awry, oxidative stress and mitochondrial dysfunction take over, and age-related chronic disorders are likely to follow. The physiological consequences can be wide ranging, potentially wreaking havoc on the brain, eye, kidney, muscle, and more. Central nervous system disorders, neurodegenerative in nature, and especially those affecting the myelin sheath, represent worthy targets for advancing therapies that act upon Klotho pathways. Current drugs for these diseases, even therapeutics that are disease modifying rather than treating only the symptoms, leave much room for improvement. It is thus no wonder that this topic has caught the attention of biomedical researchers around the world.https://www.liebertpub.com/doi/10.1089/biores.2020.0004Published versio

    Jugular venous reflux and brain parenchyma volumes in elderly patients with mild cognitive impairment and Alzheimer's disease.

    Get PDF
    BACKGROUND: To determine whether or not jugular venous reflux (JVR) is associated with structural brain parenchyma changes in individuals with mild cognitive impairment (MCI) and Alzheimer's disease (AD). METHODS: 16 AD patients (mean (SD): 81.9 (5.8) years), 33 MCI patients (mean (SD): 81.4 (6.1) years) and 18 healthy elderly controls (mean (SD): 81.5 (3.4) years) underwent duplex ultrasonography and magnetic resonance imaging scans to quantify structural brain parenchyma changes. Normalized whole brain (WB), gray matter (GM) and white matter (WM) volumes were collected, together with CSF volume. RESULTS: JVR was strongly associated with increased normalized WB (p = 0.014) and GM (p = 0.002) volumes across all three subject groups. There was a trend towards increased WB and GM volumes, which was accompanied by decreased CSF volume, in the JVR-positive subjects in both the MCI and AD groups. When the MCI and AD subjects were aggregated together significant increases were observed in both normalized WB (p = 0.009) and GM (p = 0.003) volumes for the JVR-positive group. No corresponding increases were observed for the JVR-positive subjects in the control group. Through receiver operating characteristic analysis of the brain volumetric data it was possible to discriminate between the JVR-positive and negative AD subjects with reasonable accuracy (sensitivity = 71.4%; specificity = 88.9%; p = 0.007). CONCLUSIONS: JVR is associated with intracranial structural changes in MCI and AD patients, which result in increased WB and GM volumes. The neuropathology of this unexpected and counterintuitive finding requires further investigation, but may suggest that JVR retrogradely transmits venous hypertension into the brain and leads to brain tissues swelling due to vasogenic edema

    Decreased brain venous vasculature visibility on susceptibility-weighted imaging venography in patients with multiple sclerosis is related to chronic cerebrospinal venous insufficiency.

    Get PDF
    BACKGROUND: The potential pathogenesis between the presence and severity of chronic cerebrospinal venous insufficiency (CCSVI) and its relation to clinical and imaging outcomes in brain parenchyma of multiple sclerosis (MS) patients has not yet been elucidated. The aim of the study was to investigate the relationship between CCSVI, and altered brain parenchyma venous vasculature visibility (VVV) on susceptibility-weighted imaging (SWI) in patients with MS and in sex- and age-matched healthy controls (HC). METHODS: 59 MS patients, 41 relapsing-remitting and 18 secondary-progressive, and 33 HC were imaged on a 3T GE scanner using pre- and post-contrast SWI venography. The presence and severity of CCSVI was determined using extra-cranial and trans-cranial Doppler criteria. Apparent total venous volume (ATVV), venous intracranial fraction (VIF) and average distance-from-vein (DFV) were calculated for various vein mean diameter categories: .9 mm. RESULTS: CCSVI criteria were fulfilled in 79.7% of MS patients and 18.2% of HC (p < .0001). Patients with MS showed decreased overall ATVV, ATVV of veins with a diameter < .3 mm, and increased DFV compared to HC (all p < .0001). Subjects diagnosed with CCSVI had significantly increased DFV (p < .0001), decreased overall ATVV and ATVV of veins with a diameter < .3 mm (p < .003) compared to subjects without CCSVI. The severity of CCSVI was significantly related to decreased VVV in MS (p < .0001) on pre- and post-contrast SWI, but not in HC. CONCLUSIONS: MS patients with higher number of venous stenoses, indicative of CCSVI severity, showed significantly decreased venous vasculature in the brain parenchyma. The pathogenesis of these findings has to be further investigated, but they suggest that reduced metabolism and morphological changes of venous vasculature may be taking place in patients with MS

    Iron deposition and inflammation in multiple sclerosis. Which one comes first?

    Get PDF
    Whether iron deposition is an epiphenomenon of the multiple sclerosis (MS) disease process or may play a primary role in triggering inflammation and disease development remains unclear at this time, and should be studied at the early stages of disease pathogenesis. However, it is difficult to study the relationship between iron deposition and inflammation in early MS due to the delay between the onset of symptoms and diagnosis, and the poor availability of tissue specimens. In a recent article published in BMC Neuroscience, Williams et al. investigated the relationship between inflammation and iron deposition using an original animal model labeled as "cerebral experimental autoimmune encephalomyelitis", which develops CNS perivascular iron deposits. However, the relative contribution of iron deposition vs. inflammation in the pathogenesis and progression of MS remains unknown. Further studies should establish the association between inflammation, reduced blood flow, iron deposition, microglia activation and neurodegeneration. Creating a representative animal model that can study independently such relationship will be the key factor in this endeavor

    Internal Jugular Vein Cross-Sectional Area Enlargement Is Associated with Aging in Healthy Individuals.

    Get PDF
    Internal jugular vein (IJV) narrowing has been implicated in central nervous system pathologies, however normal physiological age- and gender-related IJV variance in healthy individuals (HIs) has not been adequately assessed.We assessed the relationship between IJV cross-sectional area (CSA) and aging.This study involved 193 HIs (63 males and 130 females) who received 2-dimensional magnetic resonance venography at 3T. The minimum CSA of the IJVs at cervical levels C2/C3, C4, C5/C6, and C7/T1 was obtained using a semi-automated contouring-thresholding technique. Subjects were grouped by decade. Pearson and partial correlation (controlled for cardiovascular risk factors, including hypertension, heart disease, smoking and body mass index) and analysis of variance analyses were used, with paired t-tests comparing side differences.Mean right IJV CSA ranges were: in males, 41.6 mm2 (C2/C3) to 82.0 mm2 (C7/T1); in females, 38.0 mm2 (C2/C3) to 62.3 mm2 (C7/T1), while the equivalent left side ranges were: in males, 28.0 mm2 (C2/C3) to 52.2 mm2 (C7/T1); in females, 27.2 mm2 (C2/C3) to 47.8 mm2 (C7/T1). The CSA of the right IJVs was significantly larger (p<0.001) than the left at all cervical levels. Controlling for cardiovascular risk factors, the correlation between age and IJV CSA was more robust in males than in the females for all cervical levels.In HIs age, gender, hand side and cervical location all affect IJV CSA. These findings suggest that any definition of IJV stenosis needs to account for these factors

    Best Practices in Cancer Nanotechnology: Perspective from NCI Nanotechnology Alliance

    Get PDF
    Historically, treatment of patients with cancer using chemotherapeutic agents has been associated with debilitating and systemic toxicities, poor bioavailability, and unfavorable pharmacokinetics. Nanotechnology-based drug delivery systems, on the other hand, can specifically target cancer cells while avoiding their healthy neighbors, avoid rapid clearance from the body, and be administered without toxic solvents. They hold immense potential in addressing all of these issues which has hampered further development of chemotherapeutics. Furthermore, such drug delivery systems will lead to cancer therapeutic modalities which are not only less toxic to the patient but also significantly more efficacious. In addition to established therapeutic modes of action, nanomaterials are opening up entirely new modalities of cancer therapy, such as photodynamic and hyperthermia treatments. Furthermore, nanoparticle carriers are also capable of addressing several drug delivery problems which could not be effectively solved in the past and include overcoming formulation issues, multi-drug-resistance phenomenon and penetrating cellular barriers that may limit device accessibility to intended targets such as the blood-brain-barrier. The challenges in optimizing design of nanoparticles tailored to specific tumor indications still remain; however, it is clear that nanoscale devices carry a significant promise towards new ways of diagnosing and treating cancer. This review focuses on future prospects of using nanotechnology in cancer applications and discusses practices and methodologies used in the development and translation of nanotechnology-based therapeutics

    Pathogenic mitochondrial dysfunction and metabolic abnormalities

    Get PDF
    Herein we trace links between biochemical pathways, pathogenesis, and metabolic diseases to set the stage for new therapeutic advances. Cellular and acellular microorganisms including bacteria and viruses are primary pathogenic drivers that cause disease. Missing from this statement are subcellular compartments, importantly mitochondria, which can be pathogenic by themselves, also serving as key metabolic disease intermediaries. The breakdown of food molecules provides chemical energy to power cellular processes, with mitochondria as powerhouses and ATP as the principal energy carrying molecule. Most animal cell ATP is produced by mitochondrial synthase; its central role in metabolism has been known for >80 years. Metabolic disorders involving many organ systems are prevalent in all age groups. Progressive pathogenic mitochondrial dysfunction is a hallmark of genetic mitochondrial diseases, the most common phenotypic expression of inherited metabolic disorders. Confluent genetic, metabolic, and mitochondrial axes surface in diabetes, heart failure, neurodegenerative disease, and even in the ongoing coronavirus pandemic.https://doi.org/10.1016/j.bcp.2021.11480

    Development and characterization of CD22-targeted pegylated-liposomal doxorubicin (IL-PLD)

    Get PDF
    Non-Hodgkin’s lymphoma (NHL) is the sixth most common cause of cancer deaths in the U.S. Most NHLs initially respond well to chemotherapy, but relapse is common and treatment is often limited due to the toxicity of chemotherapeutic agents. Pegylated-liposomal doxorubicin (PLD, Ben Venue Laboratories, Inc), a produces less myelotoxicity than non-liposomal (NL) doxorubicin. To further enhance efficacy and NHL targeting and to decrease toxicity, we conjugated an anti-CD22 monoclonal antibody (HB22.7) to the surface of PLD, thereby creating CD22-targeted immunoliposomal PLD (IL-PLD). HB22.7 was successfully conjugated to PLD and the resulting IL-PLD exhibits specific binding to CD22-expressing cells as assessed by immunofluorescence staining. IL-PLD exhibits more cytotoxicity than PLD in CD22 positive cell lines but does not increase killing of CD22 negative cells. The IC50 of IL-PLD is 3.1 to 5.4 times lower than that of PLD in CD22+ cell lines while the IC50 of IL-PLD is equal to that of PLD in CD22- cells. Furthermore, IL-PLD remained bound to the CD22+ cells after washing and continued to exert cytotoxic effects, while PLD and NL- doxorubicin could easily be washed from these cells
    • …
    corecore