78 research outputs found

    Spectral observations of X Persei: Connection between H-alpha and X-ray emission

    Full text link
    We present spectroscopic observations of the Be/X-ray binary X Per obtained during the period 1999 - 2018. Using new and published data, we found that during "disc-rise" the expansion velocity of the circumstellar disc is 0.4 - 0.7 km/s. Our results suggest that the disc radius in recent decades show evidence of resonant truncation of the disc by resonances 10:1, 3:1, and 2:1, while the maximum disc size is larger than the Roche lobe of the primary and smaller than the closest approach of the neutron star. We find correlation between equivalent width of H-alpha emission line (WαW\alpha) and the X-ray flux, which is visible when 15 A˚ <Wα≀40 A˚15 \: \AA \: < W\alpha \le 40 \: \AA. The correlation is probably due to wind Roche lobe overflow.Comment: Accepted for publication in Astronomy & Astrophysic

    Buckling behavior of multilayer cylindrical shells composed of functionally graded nanocomposite layers under lateral pressure in thermal environments

    Get PDF
    In this study, the stability behavior of multilayer cylindrical shells made of functionally graded nanocomposite layers (FG-NCLs) subjected to the lateral pressure in thermal environments is investigated. It is postulated that nanocomposite layers forming layered cylindrical shells are made of single-walled carbon nanotube (SWCNT)-reinforced polymers that have four types of profiles based on the uniform and linear distributions of mechanical properties. The material properties of SWCNTs are assumed to be dependent on location as well as temperature and are obtained from molecular dynamics simulations. The governing equations are derived as partial differential equations within shear deformation theory (SDT) and solved in a closed form, using the Galerkin procedure, to determine the lateral critical pressure (LCP) in thermal environments. The numerical representations relate to the buckling behavior of multilayer cylindrical shells made of functionally graded nanocomposite layers under the uniform lateral pressure for different CNT patterns and temperatures within SDT and Kirchhoff-Love theory (KLT)

    UBVRI observations of the flickering of RS Ophiuchi at Quiescence

    Full text link
    We report observations of the flickering variability of the recurrent nova RS Oph at quiescence on the basis of simultaneous observations in 5 bands (UBVRI). RS Oph has flickering source with (U-B)_0=-0.62 \pm 0.07, (B-V)_0=0.15 \pm 0.10, (V-R)_0=0.25 \pm 0.05. We find for the flickering source a temperature T_fl = 9500 \pm 500 K, and luminosity L_fl = 50 - 150 L_sun (using a distance of d=1.6kpc). We also find that on a (U-B) vs (B-V) diagram the flickering of the symbiotic stars differs from that of the cataclysmic variables. The possible source of the flickering is discussed. The data are available upon request from the authors and on the web www.astro.bas.bg/~rz/RSOph.UBVRI.2010.MNRAS.tar.gz.Comment: 7 pages, MNRAS (accepted

    Disks Surviving the Radiation Pressure of Radio Pulsars

    Full text link
    The radiation pressure of a radio pulsar does not necessarily disrupt a surrounding disk. The position of the inner radius of a thin disk around a neutron star can be estimated by comparing the electromagnetic energy density generated by the neutron star with the kinetic energy density of the disk. Inside the light cylinder, the near zone electromagnetic field is essentially the dipole magnetic field, and the inner radius is the conventional Alfven radius. Far outside the light cylinder, in the radiation zone, E=BE=B and the electromagnetic energy density is /c∝1/r2/c \propto 1/r^2 where SS is the Poynting vector. Shvartsman (1970) argued that a stable equilibrium can not be found in the radiative zone because the electromagnetic energy density dominates over the kinetic energy density, with the relative strength of the electromagnetic stresses increasing with radius. In order to check whether this is true also near the light cylinder, we employ global electromagnetic field solutions for rotating oblique magnetic dipoles (Deutsch 1955). Near the light cylinder the electromagnetic energy density increases steeply enough with decreasing rr to balance the kinetic energy density at a stable equilibrium. The transition from the near zone to the radiation zone is broad. The radiation pressure of the pulsar can not disrupt the disk for values of the inner radius up to about twice the light cylinder radius if the rotation axis and the magnetic axis are orthogonal. This allowed range beyond the light cylinder extends much further for small inclination angles. We discuss implications of this result for accretion driven millisecond pulsars and young neutron stars with fallback disks.Comment: Accepted by Astrophysical Journal, final version with a minor correctio

    Searching for the Physical Drivers of Eigenvector-1: From Quasars to Nano-Quasars

    Get PDF
    We point out an analogy between two accreting white dwarfs with jets (CH Cyg and MWC 560) and powerful quasars. In spite of the enormous difference in the mass of the central object (a factor about 10^7), the emission lines are strikingly similar to those of I Zw1 (the prototype "Narrow Line Seyfert 1" nucleus whose spectrum is widely used as an FeII template for almost all quasars). The spectral similarity give us the unique possibility to consider the optical Eigenvector-1 diagram using objects less massive by a factor of millions. Our results reinforce the interpretation of the "Eigenvector-1 correlations" found for low redshift quasars as driven mainly by the source luminosity to central compact object mass ratio(L/M). The accreting white dwarfs CH Cyg and MWC 560, their jets and emission lines, may well represent the low energy, non relativistic end of the accretion phenomena, which encompass the most powerful quasars and the microquasars. The remarkable similarities suggest that they may be legitimately considered "nano-quasars".Comment: 5 pages, 2 figures, accepted by the Astrophysical Journal (Letters

    Possible changes of state and relevant timescales for a neutron star in LS I +61{\deg}303

    Full text link
    The properties of the short, energetic bursts recently observed from the gamma-ray binary LS I +61{\deg}303, are typical of those showed by high magnetic field neutron stars, and thus provide a strong indication in favor of a neutron star being the compact object in the system. Here, we discuss the transitions among the states accessible to a neutron star in a system like LS I +61{\deg}303, such as the ejector, propeller and accretor phases, depending on the NS spin period, magnetic field and rate of mass captured. We show how the observed bolometric luminosity (>= few x 1E35 erg/s), and its broad-band spectral distribution, indicate that the compact object is most probably close to the transition between working as an ejector all along its orbit, and being powered by the propeller effect when it is close to the orbit periastron, in a so-called flip-flop state. By assessing the torques acting onto the compact object in the various states, we follow the spin evolution of the system, evaluating the time spent by the system in each of them. Even taking into account the constraint set by the observed gamma-ray luminosity, we found that the total age of the system is compatible with being ~5-10 kyr, comparable to the typical spin-down ages of high-field neutron stars. The results obtained are discussed in the context of the various evolutionary stages expected for a neutron star with a high mass companion.Comment: 12 pages, 6 figures. Accepted for publication in Ap

    Average UV Quasar Spectra in the Context of Eigenvector 1: A Baldwin Effect Governed by Eddington Ratio?

    Full text link
    We present composite UV spectra for low redshift Type 1 AGN binned to exploit the information content of the Eigenvector 1 (E1) parameter space. Composite spectra allow a decomposition of the CIV1549 line profile - one of the strongest high-ionization lines. The simplest CIV decomposition into narrow (NLR), broad (BLR) and very broad (VBLR) components suggests that different components have an analog in Hb with two major exceptions. VBLR emission is seen only in population B (FWHM(Hb)>4000 km/s) sources. A blue shifted/asymmetric BLR component is seen only in pop. A (FWHM(Hb)<4000 km/s) HIL such as CIV. The blueshifted component is thought to arise in a wind or outflow. Our analysis suggests that such a wind can only be produced in pop. A (almost all radio-quiet) sources where the accretion rate is relatively high. Comparison between broad UV lines in radio-loud (RL) and radio-quiet (RQ) sources shows few significant differences. Clear evidence is found for a narrow CIV component in most radio-loud sources. We find also some indirect indications that the black hole (BH) spin, rather than BH mass or accretion rate is a key trigger in determining whether an object will be RL or RQ. We find a ten-fold decrease in EW CIV with Eddington ratio (decreasing from ~1 to \~0.01) while NV shows no change. These trends suggest a luminosity-independent "Baldwin effect" where the physical driver may be the Eddington ratio.Comment: 39 pages, 6 figures. To appear in Ap
    • 

    corecore