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A B S T R A C T   

In this study, the stability behavior of multilayer cylindrical shells made of functionally graded nanocomposite 
layers (FG-NCLs) subjected to the lateral pressure in thermal environments is investigated. It is postulated that 
nanocomposite layers forming layered cylindrical shells are made of single-walled carbon nanotube (SWCNT)- 
reinforced polymers that have four types of profiles based on the uniform and linear distributions of mechanical 
properties. The material properties of SWCNTs are assumed to be dependent on location as well as temperature 
and are obtained from molecular dynamics simulations. The governing equations are derived as partial differ-
ential equations within shear deformation theory (SDT) and solved in a closed form, using the Galerkin pro-
cedure, to determine the lateral critical pressure (LCP) in thermal environments. The numerical representations 
relate to the buckling behavior of multilayer cylindrical shells made of functionally graded nanocomposite layers 
under the uniform lateral pressure for different CNT patterns and temperatures within SDT and Kirchhoff-Love 
theory (KLT).   

1. Introduction 

The exceptional properties of carbon nanotubes (CNTs) such as high 
modulus of elasticity, high tensile strength and stiffness make it the most 
attractive type of reinforcement for the formation of nanocomposites 
besides using it as the main structural element [1–3]. The nano-
composites obtained by reinforcing CNTs to the metal, ceramic or 
polymer matrices are increasingly used in various fields of the modern 
technology. The nanocomposites are materials that offer many advan-
tages to producers and consumers such as improved properties, less solid 
waste and modern production techniques. According to the application 
percentages of the ceramic, metal and polymer-based nanocomposites, 
polymer-based nanocomposites are the most preferred. In addition, the 

nanocomposites exhibit significantly improved mechanical, thermal, 
optical and physicochemical properties compared to pure polymers. 
Similarly, in nanocomposites, thermal stability, non-flammability, 
physical, mechanical and barrier properties are much better than con-
ventional composite systems. The extensive research on the properties of 
polymer-based carbon nanotube reinforced composites (CNTRCs) re-
veals that even at very low volume fractions, reinforcement of CNTs 
improves the mechanical and thermal properties of the polymer matrix 
[4–9]. 

The distribution of CNTs along the thickness direction of the polymer 
matrix can be uniform or functionally graded. Although carbon nano-
tube reinforced composites or nanocomposites, were used as a single- 
layer structural element in the early stages of their formation, they 
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have started to be used as multilayer structural elements in the last few 
years. Since the effect of thermal environments is critical in the appli-
cations of nanocomposite structural elements, the investigation of their 
stability behavior in thermal environments has always been the focus of 
attention of researchers. The first attempts to buckling FG-nanocom 
posite cylindrical shells in thermal environments were made by Shen 
et al. [10–12]. The solution of the governing equations in these studies 
was carried out using a singular perturbation technique in conjunction 
with a two-step perturbation approach. Following these studies various 
investigations on the buckling and postbuckling behaviors of 
FG-nanocomposite shells are reported by other research teams using 
different theories and methods. Among them, Chakraborty et al. [13] 
studied the stability and vibration analysis of CNT reinforced functional 
grade laminated composite cylindrical shell panels using a semi- 
analytical approach. Hieu and Tung [14,15] presented the mechanical 
and thermomechanical post-buckling behavior of CNT-reinforced com-
posite cylindrical shells surrounded by an elastic medium and subjected 
to combined mechanical loads in thermal environments. Ghasemi and 
Soleymani [16] investigated the buckling of functionally graded 
CNT/fiber/polymer/metal composite panels subjected to hydrostatic 
pressure, considering the caking and defect issues caused by simulta-
neous fabrication. Nejati et al. [17] reported thermal buckling of 
nanocomposite hardened cylindrical shells reinforced with functionally 
graded wavy carbon nanotubes with temperature-dependent properties. 
Bacciocchi [18] studied the buckling analysis of three-phase CNT/po-
lymer/fiber functionally graded orthotropic plates: The effect of 
non-uniform distribution of oriented fibers on critical load. Sobhani and 
Masoodi [19] presented a comprehensive shell approach for vibration of 
porous nano-enriched polymer composite coupled spheroidal-cylin 
drical shells. Muc et al. [20] used higher order theories for the buck-
ling and post-buckling studies of shallow spherical shells made of 
functionally graded materials. Shi et al. [21] studied vibration analysis 
of combined functionally graded cylindrical-conical shells coupled with 
annular plates in thermal environment. Avey et al. [22] investigated the 
thermoelastic stability of CNT patterned conical shells under thermal 
loading within the framework of shear deformation theory. Sofiyev and 
Fantuzzi [23] presented the stability analysis of inhomogeneous nano-
composite cylindrical shells within SDT under hydrostatic pressure in 
the thermal environment. Ipek et al. [24] studied the buckling behavior 
of nanocomposite plates with functionally graded properties under 
compression loads in elastic and thermal environments. Kuriakose and 
Sreehari [25] studied vibration and flutter analysis of damaged com-
posite plates under thermal environment and its passive control using 
piezoelectric patches. 

The number of publications on the bending and stability behavior of 
multilayer cylindrical shells whose layers are composed of FG- 
nanocomposites is quite limited. Adopting the concept of FG- 
nanocomposites, Shen et al. [26] studied the bending analysis of 
FG-GRC laminated cylindrical panels on elastic foundations in thermal 
environments by applying a two-step perturbation approach. Monaco 
et al. [27,28] investigated hygro-thermal static analysis, vibrations and 
buckling of laminated nanoplates via nonlocal strain gradient theory. 
Baghbadorani and Kiani [29] studied free vibration analysis of func-
tionally graded cylindrical shells reinforced with graphene platelets. 
Avey et al. [30,31] solved the free vibration problem of layered func-
tionally graded nanocomposite structures by considering transverse 
shear stresses and rotational inertia and thermal buckling problem of 
laminated nanocomposite conical shells by considering transverse shear 
stresses. Shen et al. [32] examined postbuckling behaviors of 
pressure-loaded laminated cylindrical shells made of carbon nanotube 
reinforced composite (FG-CNTRC) with out-of-plane effective Poisson’s 
ratio under thermal environmental conditions using the asymptotic 
sense by means of a singular perturbation technique in associate with a 
two-step perturbation approach. Chen et al. [33] reexamined for linear 
and nonlinear free vibration of porous sandwich cylindrical shells 
reinforced by graphene platelets by applying a two-step perturbation 

approach. Shi et al. [34] presented multilayer heterostructure inhomo-
geneous model for pressurized functionally graded annular structures 
with arbitrary elastic property along the radial direction. 

The aim of this paper is to perform buckling analysis of multilayer 
functionally graded carbon nanotube reinforced composite cylindrical 
shells by extending the first order shear deformation theory proposed for 
the multilayer homogeneous composite shells to the multilayer func-
tionally graded nanocomposite shells. The modified theory contains 
only four unknowns, shear correction factors are not used (it is incon-
venient to use), and the functions characterizing the distribution of 
transverse shear stresses in the thickness direction are equal to zero at 
the upper and lower surfaces, satisfying the assumption of stress-free 
boundary conditions. It is assumed that carbon nanotubes are evenly 
distributed over the thickness of each layer and are functionally graded 
in the form of a pyramid, an inverted pyramid, and a sandglass. The 
system of governing equations is solved to obtain the critical lateral 
pressure and mode shapes of multilayer shells composed of FG-NCLs. 
The accuracy of the presented formulation is achieved by comparing 
the magnitudes of the LCP with the results available in the literature. In 
addition, the influences on the critical lateral pressure are reported in 
detail by considering geometric parameters, CNT distributions, volume 
fraction of CNTs, change of the order and number of the layers. 

The paper is organized as follows: Section 2 provides a basic 
description and mathematical models of multilayer cylindrical shells 
made of FG-NCLs, while Section 3 explains the solution procedure. The 
mechanical properties and design parameters of laminated nano-
composite shells and stability analysis are discussed in Section 4. Finally, 
Section 5 highlights the main conclusions of this study. 

2. Methodology 

2.1. Description of multilayer cylindrical shells made of FG-NCLs 

The geometrical configuration of the multilayer cylindrical shell 
made of FG-NCLs with mean radius R, total thickness h and length L, 
under the uniform lateral pressure is depicted in Fig. 1. The three 
orthogonal displacements of an arbitrary point on the multilayer cy-
lindrical shell reference surface in the directions x, y and z directions are 
represented as u1,u2 and u3, respectively. It is postulated that the 
bonding condition of the layers of the multilayer cylindrical shell, which 
consists of nanocomposite layers of Nequal thickness (δ = N/h)perfectly 
bonded to each other, is purely rigid, and that the layers do not break 
apart during the deformation process. The relationship between the 
forces and the Airy stress function is assumed to be as follows:(N11, N22,

N12) = h
[
∂2Φ
∂y2 ,

∂2Φ
∂x2 , − ∂2Φ

∂x∂y

]
. In the chosen coordinate system, the 

multilayer cylindrical shell is defined as: 

Π = {x, y, z : (x, y, z) ∈ [0,R] × [0,L] × [ − h / 2, + h / 2]} (1) 

Since bending deformations are negligible except in a region close to 
the edge supports prior to buckling, the membrane form of the equi-
librium equations is commonly used to obtain the pre-buckling forces of 
cylindrical shells [35–37]. Taking this assumption into account, the 
anterior buckling features of the multilayer nanocomposite cylindrical 
shell are denoted by the superscript 0 and take the following form [35]: 

N0
11 = 0, N0

22 = − PR, N0
12 = 0 (2)  

where N0
pq are the membrane forces for the condition with zero initial 

moments andP denotes the uniform lateral pressure. 
To extend Ambartsumyan’s shear deformation theory to functionally 

graded nanocomposite shells, equivalent material properties need to be 
estimated to account for the influence of CNTs. For this purpose, multi- 
scale modeling of CNTs and matrix is performed in the study. Various 
micromechanical models have been developed to predict the effective 
material properties of functionally graded nanocomposites, such as the 
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Mori-Tanaka model [38,39] and the Voigt model as rule of mixture [40, 
41]. The Mori-Tanaka model can be applied to microparticles, and the 
mixing rule is very useful for determining the effective material prop-
erties and responses of functionally graded nanocomposite structural 
elements. At the nanoscale, both the Mori-Tanaka and Voigt models 
need to be extended to include small-scale effects. Voigt and 
Mori-Tanaka models have been shown to have the same effect in pre-
dicting the buckling and vibration properties of structural members with 
various configurations, such as functionally graded ceramic-metal 
beams, plates and shells [42–44]. 

The effective material properties are defined based on extended rule 
of mixture [10–12]. While the effective moduli of elasticity and co-
efficients of thermal expansion of nanocomposite layers are assumed to 
be functions of temperature and location, the effective Poisson ratio and 
density are assumed to be constant since they are weakly dependent on 
the temperature change and location. Based on these assumptions, the 
effective mechanical and thermal expansion coefficients of the ith-layer 
can be mathematically modeled as follows [10,23,24]:  

and 

α(i)
11(z,T) =

V(i)
c Ec(i)

11Tα
c(i)
11T + V(i)

m Em(i)
T αm(i)

T

V(i)
c Ec(i)

11T + V(i)
m Em(i)

T

α(i)
22(z,T) =

(
1 + νc(i)12

)
V (i)
c αc(i)

22T +
(
1 + νm(i)

)
V(i)
m αm(i)

T − ν(i)12 α
(i)
11(z,T)

(4)  

where V(i)
c and V(i)

m represent the volume fractions of CNTs and polymer 
in the ith-layer, respectively; Ec(i)

ppT ,G
c(i)
pqT(p= 1, 2, q= 1, 2,3) and 

Ec(i)
ppT,G

c(i)
pqT(p= 1,2, q= 1,2, 3) denote the modulus of elasticity of the 

reinforcement and matrix, respectively, in the ith-layer, while the CNT 
efficiency parameters η(i)q (q= 1, 2,3) in the ith-layer are introduced to 
capture the effect of load transfer between nanotubes and matrix phase 
as well as the scale dependent material properties [10]. In addition, αc(i)

ppT 

and αm(i)
T denote the thermal expansion coefficients of the CNTs and the 

polymer in the ith-layer, respectively. 
While many researchers have modeled the mechanical behavior of 

single-walled carbon nanotube (SWCNT) by taking input from molecular 
mechanics, several new computational methods such as equivalent 
continuum models [45], quasi-continuum models [46], and molecular 

dynamics simulations [47–51] and developed their applications to 
nanostructures. In this paper, the CNT efficiency parameter can be 
determined by comparing the elastic modulus of CNTRCs obtained from 
MD simulations with those predicted from the mixture rule. 

The CNT volume fraction is defined by a gradual change from the 
inner to the outer surface of the ith-layer, proposing that, 

V (i)
c = ΓcV∗(i)

c (5)  

where 

V∗(i)
C =

(
ρ(i)c

m(i)
c ρ(i)m

−
ρ(i)c
ρ(i)m

+ 1
)− 1

(6)  

in which m(i)
c denotes the mass fraction of CNTs, ρ(i)c and ρ(i)m are density of 

CNTs and matrix phase in the layer ith, respectively. Here Γc is the linear 
function describing the distribution of CNTs along the thickness direc-
tion in the ith-layer, as classified by Shen [12], the profiles in the layers 
are rhombic prism (◊), inverted pyramid (V), sandglass (X) and uniform 

(U) shaped and modeled as follows (see, Fig. 2) [11]: 

V(i)
c

V∗(i)
c

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

U for Γc = 1

V for Γc = 2(0.5 − z)

◆ for Γc = 2(1 − 2|z|)

X for Γc = 4|z|

(7)  

2.2. Basic relations and equations 

The stress components of multilayer cylindrical shells consisting of 
FG-NCLs with linearly thermoelastic material properties as linear func-
tions of strain and temperature change within SDT can be written as 
follows [26,30]: 
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ(i)
11

σ(i)
22

σ(i)
12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

K(i)
11(z,T) K

(i)
12(z,T) 0

K(i)
21(z,T) K

(i)
22z0

0

0 0 K(i)
66(z,T)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

ε11

ε22

γ12

⎤

⎥
⎥
⎥
⎥
⎦
−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ(i)11T

σ(i)22T

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8) 

Fig. 1. (a) Multilayer cylindrical shell composed of nanocomposite layers with different CNT-patterns subjected to lateral pressure and (b) the cross section.  

E(i)
11(z,T) = η(i)1 V (i)

c Ec(i)
11T + V (i)

m Em(i)
T ,

η(i)2

E(i)
22(z,T)

=
V (i)
c

Ec(i)
22T

+
V (i)
m

Em(i)
T

,
η(i)3

G(i)
12(z,T)

=
V (i)
c

Gc(i)
12T

+
V(i)
m

Gm(i)
T

,

G(i)
13(z,T) = G(i)

12(z,T), G(i)
23(z,T) = 1.2G(i)

12(z,T), ν
(i)
12 = V∗(i)

c νc(i)12 + V(i)
m νm(i), ρ(i)t = V∗(i)

c ρc(i) + V(i)
m ρm(i)

(3)   
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⎡

⎢
⎢
⎣

σ(i)
13

σ(i)
23

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

K(i)
55(z,T) 0

0 K(i)
44(z,T)

⎤

⎥
⎥
⎥
⎦

⎡

⎣
γ13

γ23

⎤

⎦ (9)  

σ(i)
11T =

⎡

⎢
⎢
⎢
⎣

K(i)
11(z,T) 0

0 K(i)
12(z,T)

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

α(i)
11(z,T)

α(i)
22(z,T)

⎤

⎥
⎥
⎥
⎦

ΔT, σ(i)
22T

=

⎡

⎢
⎢
⎢
⎣

K(i)
21(z,T) 0

0 K(i)
22(z,T)

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

α(i)
11(z,T)

α(i)
22(z,T)

⎤

⎥
⎥
⎥
⎦

ΔT (10)  

where σ(i)pq and σ(i)ppT(p = 1, 2, q = 1, 2, 3)indicate the stresses and thermal 
stresses in the ith-layer, εpq indicate the strains, ΔT = T − T0 is the 
temperature change in which T0 is the reference temperature, at T0 the 
thermal strains are absent and the elements of elastic constant tensor 
K(i)

pqare formed from effective material properties:  

in which − 1
2+

i− 1
N ≤ z ≤ − 1

2+
i
N. 

The shear stresses σ(i)q (q= 1, 2) in the ith-layer are expressed as [30, 
31,36]: 

σ(i)
33 = 0, σ(i)

p3 =
f (i)(z)
dz

Ψp(x, y), (p= 1, 2) (12)  

where then symbols Ψp(x,y) represent the rotation of the normal to mid- 
plane about y and x axes, f(i)(z) represent shape functions in the ith-layer 
determining the distribution of the transverse shear strains and stresses 
along the thickness and are used as follows [36,37]: 

df (i)(z)
dz

= 1 − 4z2 (13) 

By combining Eqs. (5), (8), (9) and (11), the strain components for 
multilayer cylindrical shells as functions of the strain components and 
the curvature change at the reference surface in the SDT framework can 
be written as follows: 

⎡

⎢
⎢
⎢
⎢
⎣

ε11

ε12

γ12

⎤

⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e11 − z
∂2u3

∂x2 + Π(i)
1(z,T)

∂Ψ1

∂x

e22 − z
∂2u3

∂y2 + Π(i)
2(z,T)

∂Ψ2

∂y

γ012 − 2z
∂2u3

∂x∂y+ Π(i)
1(z,T)

∂Ψ1

∂y + Π(i)
2(z,T)

∂Ψ2

∂x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(14)  

where e11,e22,γ012 are the linear strain components on the reference 
surface, defined by 

e0
11 =

∂u1

∂x , e0
22 =

∂u2

∂y −
u3

R
, e0

12 =
∂u2

∂x +
∂u1

∂y (15)  

and Π(i)
k(z,T)(k = 1,2)are parameters, defined by 

Π(i)
1(z,T) =

∫z

0

1
K(i)

55(z,T)

df (i)

dz
dz, Π(i)

2(z,T) =

∫z

0

1
K(i)

44(z,T)

df (i)

dz
dz (16) 

The stress resultants are obtained using the components of stress field 
as under the SDT assumptions s [35–37]: 

[
Npq, Qp, Mpq

]
=

∑N

i=1

∫zi

zi− 1

[
σ(i)pq , σ

(i)
p3 , zσ(i)pq

]
dz (17) 

The thermal stress resultants (NT
pp,MT

pp) caused by high temperature 
are found as follows [11,22]: 

(
NT

11,M
T
11

)
=

∑N

i=1

∫zi

zi− 1

⎡

⎢
⎣
K(i)

11(z,T) 0

0 K(i)
12(z,T)

⎤

⎥
⎦

⎡

⎢
⎣
α(i)

11(z,T)

α(i)
22(z,T)

⎤

⎥
⎦(1, z)ΔTdz,

(
NT

22, M
T
22

)
=

∑N

i=1

∫zi

zi− 1

⎡

⎢
⎣
K(i)

21(z,T) 0

0 K(i)
22(z,T)

⎤

⎥
⎦

⎡

⎢
⎣
α(i)

11(z,T)

α(i)
22(z,T)

⎤

⎥
⎦(1, z)ΔTdz.

(18) 

Using Eqs. (8), (9), (14), (17) and (18) together, the governing 
equations for multilayer cylindrical shells composed of FG-NCLs sub-
jected to the lateral pressure can be expressed as: 

Fig. 2. Shapes of the uniform and linear variations of CNTs in the ith-layer.  

K(i)
11(z,T) =

E(i)
11(z,T)

1 − ν(i)12ν
(i)
21

, K(i)
22(z,T) =

E(i)
22(z,T)

1 − ν(i)12ν
(i)
21

, K(i)
12(z,T) = ν(i)21K

(i)
11(z,T) = ν(i)12(z,T)K

(i)
22(z,T) = K(i)

21(z,T),

K(i)
44(z,T) = G(i)

23(z,T), K(i)
55(z,T) = G(i)

13(z,T), K
(i)
66(z,T) = G(i)

12(z,T).

(11)   
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ

u3

Ψ1

Ψ2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(19)  

where Lpq are differential operators, are described in Appendix A. 

3. Solution procedure 

For the two end edges of the multilayer cylindrical shell composed of 
FG-NCLs, the boundary condition is assumed to be simply supported and 
expressed as [11,36,37]: 

At x = 0, L u3 =
∂2Φ
∂y2 = Ψ2 = M11 = 0 (20)  

where the closed or periodicity condition is expressed as 

∫2πR

0

∂u2

∂y dy = 0 (21) 

The solution of (19) are sought as follows [35,37]: 

Φ = C1sin
(mπ
L

x
)

sin
(n
R
y
)
, u3 = C2sin

(mπ
L

x
)

sin
(n
R
y
)
,

Ψ1 = C3 cos
(mπ
L

x
)

sin
(n
R
y
)
, Ψ2 = C4 sin

(mπ
L

x
)

cos
(n
R
y
)

(22)  

where Cq are unknown amplitudes, m and n are integer values. 
By introducing (22) into Eq. (19), and considering (2), by performing 

the Galerkin procedure, after some mathematical manipulations, yields: 
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F11 − F12 F13 F14

F21 − F22 F23 F24

F31 − F32 F33 F34
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⎤

⎥
⎥
⎥
⎥
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⎥
⎥
⎥
⎦

⎡
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
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⎤
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(23)  

where Fpq are described in Appendix B. 
When the determinant of the 4 × 4type matrix in Eq. (23) is 

expanded according to the fourth row and first column and set to zero, 
the following equation is obtained for the analytical expression deter-
mining the nondimensional critical lateral pressure (ND-LCP) of the 
laminated shells formed from the FG-NCLs in the thermal environment: 

PLcr
1sdt =

b2

Em(i)
T0

n2π2R
F41U1 + F43U3 + F44U4

U2
(24)  

where Em(i)
T0 

is the modulus of elasticity in the ith-layer at T0 = 300(K) (at 
room temperature) and Uq(q = 1, 2, ..., 4) are defined by 

U1 = −

⃒
⃒
⃒
⃒
⃒
⃒

F12 F13 F14
F22 F23 F24
F32 F33 F34

⃒
⃒
⃒
⃒
⃒
⃒
, U2 =

⃒
⃒
⃒
⃒
⃒
⃒

F11 F13 F14
F21 F23 F24
F31 F33 F34

⃒
⃒
⃒
⃒
⃒
⃒
, U3 = −

⃒
⃒
⃒
⃒
⃒
⃒

F11 F12 F14
F21 F22 F24
F31 F32 F34

⃒
⃒
⃒
⃒
⃒
⃒
, U4

=

⃒
⃒
⃒
⃒
⃒
⃒

F11 F12 F13
F21 F22 F23
F31 F32 F33

⃒
⃒
⃒
⃒
⃒
⃒

(25) 

The minimum value of the ND-LCP is found by minimizing (24) ac-
cording to the longitudinal and circumferential wave numbers. When 
transverse shear strains are not taken into account, the magnitudes of 
ND-LCP are found in the framework of KLT. 

4. Numerical results 

4.1. Material properties in thermal environments 

The numerical investigations for the stability of multilayer cylindrical 
shells composed of FG-NCLs subjected to the uniform lateral pressure in 
thermal environments are discussed in this section. To examine the accuracy 
and effectiveness of the present solutions, two comparison examples are first 
carried out. The effective material properties of poly methyl methacrylate 
(PMMA) and (10, 10) SWCNT with length = 9.26nm, radius = 0.68nm, 
tubethickness = 0.067nm, νc(i)

12 = 0.175that make up the nanocomposite in 
the layers are defined as, respectively [10–12]: 

Em(i)
T = (3.52 − 0.0034T) × 109 (Pa), νm(i) = 0.34, αm(i)

T

= 45(1+ 0.0005ΔT) × 10− 6/K (26)  

and 

At reference temperature, that is, at T0 = 300K, αm(i)
T0

= 45× 10− 6/K,

Em(i)
T0

= 2.5× 109Pa. 
The magnitudes of elastic properties and thermal expansion co-

efficients of the (10, 10) SWCNT in the ith-layer for different Tare 

Table 1 
The elastic properties and thermal expansion coefficients for (10, 10) SWCNT in 
the ith-layer under temperature environments.  

(in K) (in TPa) (in 1/K) 

Temperature Ec(i)
11T Ec(i)

22T Gc(i)
12T αc(i)

11T/106 αc(i)
22T/106 

300 5.6451 7.0796 2.0665 3.4579 5.1682 
450 5.5461 6.9563 2.3728 4.3758 5.0539 
600 5.4994 6.8984 2.9283 4.6852 4.9535 
750 5.4588 6.8482 3.8325 4.6152 4.8670  

Table 2 
Magnitudes of CNT efficiency parameters in the ith-layer.  

Vc(i)
∗ η(i)1 η(i)2 η(i)3 

0.12 0.137 1.626 0.715 
0.17 0.142 1.626 1.138 
0.23 0.141 1.585 1.109  

Ec(i)
11T = 6.18387 − 2.86 × 10− 3T + 4.22867 × 10− 6T2 − 2.2724 × 10− 9T3

Ec(i)
22T = 7.75348 − 3.58 × 10− 3T + 5.30057 × 10− 6T2 − 2.84868 × 10− 9T3

Gc(i)
12 = 1.80126 + 0.77845 × 10− 3T − 1.1279 × 10− 6T2 + 4.93484 × 10− 10T3

αc(i)
11T =

(
− 1.12148 + 2.289 × 10− 2T − 2.88155 × 10− 5T2 + 1.13253 × 10− 8T3)⋅10− 6/K

αc(i)
22T =

(
5.43874 − 9.95498 × 10− 4T + 3.13525 × 10− 7T2 − 3.56332 × 10− 12T3)⋅10− 6/K

(27)   
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calculated using the Eq. (27) and listed in Table 1. 
The corresponding values of CNT efficiency parameters 

η(i)q (q= 1,2, 3) in the ith-layer are tabulated in Table 2. As it is known, the 
charge transfer between nanotube and polymeric phases is less than 
perfect due to surface effects, strain gradient effects, intermolecular 
coupled stress effects, etc. To consider these effects, the CNT efficiency 
parametersη(i)q are included in the Eq. (3). The magnitudes of η(i)q are 
determined by matching the elastic modulus of nanocomposites esti-
mated by Han and Elliott [9] with molecular dynamics simulations with 
the values estimated by the extended mixing rule in the Eq. (3). 

4.2. Comparative examples 

The critical lateral pressure of FG-nanocomposite and orthotropic 
cylindrical shells are calculated and compared with the results in the 
open literature. The comparison results are listed in Tables 3 and 4. Here 
the magnitude of the LCP is found using PLcr

sdt = PLcr
1sdtE

m(i)
T0

in Eq. (24). 
Example 1: The magnitudes of LCP for single-layer nanocomposite 

cylindrical shells patterned by CNTs with the uniform and sandglass- 
model based on the SDT under two thermal environmental conditions 
are compared with the results of Shen [11] and are presented in Table 3 
for (i = 1).The material properties are taken from the study of Ref. [11] 
and can be carried out from (26) and (27) in thermal environments. The 
following geometrical data are used: L2 = 100Rh, h = 0.002m, R = 30h 
[11]. Since the number of longitudinal waves corresponding to the LCP 
is equal to one, it is not included in Table 3, and the values of the number 
of circumferential waves are shown in the table. The magnitudes of the 
LCP for uniform and sandglass shaped nanocomposite cylinders based 

on the SDT for the same circumferential wave numbers in good agree-
ment with the results of Shen [11] at two thermal environmental 
conditions. 

Example 2: The LCP of single-layer homogenous orthotropic cylin-
drical shells (in kPa) are calculated with various L/R ratio and listed in 
Table 4. These values are compared with the appropriate magnitudes 
obtained from the Li and Lin [52]. In computations are used special case 
of the expression (24). Two kinds of orthotropic materials are used. 
(Material 1): E(1)

11 = 149.66 GPa, E(1)
22 = 9.93 GPa, (Material 2): E(1)

11 =

9.93 GPa, E(1)
22 = 149.66 GPa, and shear moduli and Poisson’s ratio of 

both materials (M1 and M2) are G(1)
12 = G(1)

13 = G(1)
23 = 4.48 GPa, ν(1)12 =

0.28 [52]. The cylindrical shell characteristics are as follows:R/h = 30, 
L/R = 1, 2 and 5. The number of circumferential waves (ncr) corre-
sponding to the LCP is presented in brackets. It is clearly seen that the 
present results are in good agreement with those in the literature and 
show that the derived basic equations and the obtained formula for this 
study are correct. 

4.3. Parametric studies 

In what follows, we analyze the sensitivity of the ND-LCP (or PLcr
1 ) to 

FG-nanocomposites, CNT patterns, SDT formulation, change of tem-

perature, by considering the ratios100%×

(
PLcr

1FG − PLcr
1U

PLcr
1U

,
PLcr

1KT − PLcr
1fsdt

PLcr
1KT

,
PLcr

1T − PLcr
1T0

PLcr
1T0

)

. 

Four of the main parameters affecting the ND-LCP are the transverse 
shear strains, the temperature rise, the CNT-patterns and arrangement of 
layers. Since the number of longitudinal waves is equal to one, it is not 
included in the tables. The cross-sections of cylindrical shells with six 
symmetric and anti-symmetric layers used in numerical calculations and 
the (0◦)-single-layer for comparison are presented in Fig. 3. In the 
analysis presented below, the magnitudes of the ND-CLP for single-layer 
and multilayer cylindrical shells composed of FG-NCLs in the thermal 
environments are calculated in the framework of KLT and SDT. 

The variation of ND-LCP ND- LCP and circumferential wave numbers 
of single- and multilayer cylindrical shells consisting of symmetric and 
anti-symmetric FG-NCLs of uniform, inverted pyramid, rhombic prism 
and sandglass patterns according to the increase of the L/Rin thermal 
environments are listed in Tables 5 and 6. The cylindrical shell di-
mensions are:h = 0.002m, R/h = 20, the volume fraction Vc(i)

∗ is 0.28, 
other material properties are found by the Eqs. (26) and (27) depending 
on the temperature rise. The ND-LCP values and corresponding 

Table 3 
Comparison the magnitudes of LCP for single-layer cylindrical shells patterned 
by CNTs based on the SDT with the results of Shen [11].   

PLcr
sdt (inkPa), (ncr), 

Patterns type Uniform Sandglass profile 
T (K) Vc(1)

∗ = 0.12  

Ref. [11] Present study Ref. [11] Present study 
300 474.80(5) 473.74(5) 558.72(6) 557.36(6) 
500 367.35 (6) 367.29 (6) 432.75(6) 431.33(6) 
T (K) Vc(1)

∗ = 0.28 
300 943.62(6) 942.46(6) 1234.8(6) 1235.20(6) 
500 723.33 (6) 723.68(6) 963.81(6) 958.93(6)  

Table 4 
Comparison the LCP for homogeneous orthotropic cylindrical shells within SDTs.   

L/R = 1 L/R = 2 L/R = 5 

Ref. [52] 
HSDT 

Present SDT Ref. [52] 
HSDT  

Present 
SDT  

Ref. [52] 
HSDT 

Present 
SDT 

PLcr
sdt (kPa), (ncr)

M1 3560(7) 3561(7) 1498(5)  1496(5)  628(4) 628(4) 
M2 11,192(4) 11,192(4) 5962 (3)  5961(3)  2522(2) 2522(2)  

Fig. 3. The cross sections of multilayer nanocomposite orthotropic cylindrical shells.  
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circumferential wave numbers of the multilayer FG-nanocomposite cy-
lindrical shells for all patterns, layer arrangement and number reduce 
with the rise of the L/Rat the fixed value of the temperature. 

In the framework of SDT, the influences of FG-patterns on the PLcr
1sdt 

compared to the uniform patterns generally show an irregularity with 
increasing L/Rand temperature rise. For instance, the most pronounced 
pattern effects on thePLcr

1sdt occur in the (90◦/0◦/0◦/90◦)- array cylindri-
cal shells consisting of ◊-originating layers are (− 37.25 %), (− 36.21 %) 
and (− 37.07 %), at T = 300 (K), 500 (K) and 700 (K), respectively, when 
L/R = 1.0 (see, Tables 5 and 6). 

Although the influences of transverse shear strains on the ND-LCP 
differ with the change of L/Rand temperature rise, the most promi-
nent effect always occurs in cylindrical shells consisting of sandglass- 
originating layers. For example, At T = 300 (K), the most prominent 
effects of transverse shear strains on the ND-LCP of multilayer shells 
occur in (0◦/90◦/90◦/0◦)-array shell composed of layers originating 
from sandglass model with 84 % and 28.32 %, as the L/R varies between 
0.25 and 1.0, respectively. The closest to those influences is in the (0◦/ 
90◦/90◦/0◦) -array shells consisting of U-originating layers, it is lower 
approximately 5.61 %, and 8.81 %, respectively, as the L/R varies be-
tween 0.25 and 1.0 (see, Table 5). For T = 500 (K), the most significant 
transverse shear strains effects on the ND-LCP occur in (0◦/90◦/90◦/0◦)- 
array shells originating from sandglass with 84.02 % and 27.18 %, 
respectively, when the L/R varies between 0.25 and 1.0. It should be 
emphasized that when L/R=0.75, the greatest transverse shear strains 
effect occurs in the (0◦/90◦/0◦)-sandwich shell with the 39.54 %. The 
closest case to those effects occurs in the (0◦/90◦/90◦/0◦)-array shells 
consisting of U- originating layers and is approximately 6.5 % and 3.03 
% lower as L/R = 0.25 and 1.0 (see, Table 5). At T = 700 (K), the most 
prominent effects of transverse shear strains on the ND-LCP of multi-
layer shells occur in (0◦/90◦/90◦/0◦)-array shells composed of layers 
originating from sandglass-model with 83.42 % and 26.47 %, respec-
tively, when the L/R varies between 0.25 and 1.0 (see, Table 6). The 
effect of transverse shear strains on ND-LCP significantly reduces for all 

pattern types, in the arrangement and number of layers, as the L/R 
increment (see, Table 6). 

When the L/Rratio is changed for all values of T, as the PLcr
1sdt of 

multilayer cylindrical shells is compared with the PLcr
1sdt of (0◦) single- 

layer shell, it is revealed that the most significant differences occur in 
(90◦/0◦/90◦) and (90◦/0◦/0◦/90◦)-arrangement shells. It is seen that the 
least difference occurs for ND-LCP in (0◦/90◦/0◦)-arrangement shell. In 
addition, with the rise of T, the effect of layer arrangement on ND-LCP 
reduces (see, Tables 5 and 6). In the SDT framework, the effects of 
temperature rise on the PLcr

1sdt generally increase irregularly as L/Rin-
creases. The most prominent effect on the ND-LCP is (− 8.55 %) in the 
(0◦/90◦/90◦/0◦) -alignment shells with uniform patterns when 
comparing ND-LCPs at T = 500 (K) and T = 300 (K), while that effect is 
(+10.4 %) in X-originating (90◦/0◦/0◦/90◦)-arrangement shells when 
comparing ND-LCPs for T = 700 (K) and T = 300 (K)  (see, Tables 5 and 
6). 

The distribution of the magnitudes of the ND- LCP and circumfer-
ential wave numbers of single-layer and multilayer cylindrical shells 
consisting of symmetric and anti-symmetric FG-NCLs with uniform, 
inverted pyramid, rhombic prism and sandglass patterns according to 
the rise of R/h in thermal environments within SDT and KLT are listed in 
Table 7 and Figs. 4–9. In the formation of Table 7, all values except L/R 
are the data used for the formation of the previous tables. The magni-
tudes of ND-LCP and corresponding circumferential wave numbers of 
the multilayer FG-nanocomposite cylindrical shells for all patterns, layer 
arrangement and number reduce with the rise of the R/hat the fixed 
value of the temperature. For T = 300 (K) and when the R/hratio in-
creases from 25 to 50, the most pronounced pattern effects on the ND- 
LCP occur in multilayer shell with different arrays and number of 
layers, consisting of ◊- and V- originating layers. For example, the most 
prominent pattern effect (− 38.28 %) occurs in the (90◦/0◦/0◦/90◦) 
-array cylindrical shells with ◊-originating layers for R/h = 50. For T =
500 (K), the most prominent pattern effects on the ND-LCP occur in 
shells consisting of inverted pyramid and ◊-originating layers, whereas 

Table 5 
Variation of the ND-LCP and circumferential wave numbers of single- and multilayer cylindrical shells consisting of uniform and FG-NCLs against the L/R with T = 300 
and 500(K).  

L/R Number and arrangement of layers PLcr
1 × 100, (ncr), T = 300 (K) 

U V ◊ X 

SDT KLT SDT KLT SDT KLT SDT KLT 

0.25 (0◦) 1.550 (24) 5.77 (25) 1.594 (24) 4.565 (28) 1.515 (23) 3.601 (28) 1.628 (24) 7.120 (33) 
(0◦/90◦) 2.627 (15) 5.344 (13) 2.306 (15) 4.432 (16) 2.240 (16) 3.761 (13) 2.473 (16) 4.780 (13) 
(0◦/90◦/0◦) 1.998 (27) 7.760 (25) 2.000 (21) 5.988 (20) 2.360 (21) 6.060 (21) 1.793 (25) 8.712 (29) 
(90◦/0◦/90◦) 2.969 (24) 8.104 (7) 2.910 (17) 6.192 (8) 3.100 (16) 6.120 (8) 2.715 (30) 9.252 (6) 
(0◦/90◦/0◦/90◦) 2.876 (35) 13.22 (13) 2.548 (33) 9.032 (16) 3.122 (23) 8.396 (13) 2.548 (39) 12.92 (13) 
(0◦/90◦/90◦/0◦) 2.428 (28) 11.23 (20) 2.418 (22) 7.612 (16) 2.938 (20) 7.896 (15) 2.083 (26) 13.01 (23) 
(90◦/0◦/0◦/90◦) 3.012 (40) 11.330 (8) 2.978 (20) 7.712 (10) 3.186 (20) 7.952 (11) 2.747 (40) 13.21 (7) 

0.50 (0◦) 0.738 (14) 1.309 (16) 0.728 (13) 1.148 (14) 0.639 (13) 0.903 (14) 0.833 (13) 1.784 (17) 
(0◦/90◦) 1.148 (6) 1.403 (7) 0.898 (8) 1.133 (8) 0.832 (7) 1.002 (7) 1.027 (7) 1.262 (7) 
(0◦/90◦/0◦) 1.050 (12) 1.949 (13) 0.988 (12) 1.502 (11) 1.036 (10) 1.514 (10) 1.013 (11) 2.182 (15) 
(90◦/0◦/90◦) 1.828 (5) 2.581 (4) 1.527 (5) 1.976 (5) 1.479 (5) 1.823 (5) 2.015 (5) 3.642 (3) 
(0◦/90◦/0◦/90◦) 1.928 (8) 3.692 (8) 1.511 (10) 2.305 (8) 1.583 (8) 2.184 (7) 1.859 (9) 3.317 (6) 
(0◦/90◦/90◦/0◦) 1.498 (9) 2.819 (10) 1.308 (10) 1.955 (8) 1.428 (8) 2.014 (8) 1.348 (13) 3.266 (12) 
(90◦/0◦/0◦/90◦) 2.068 (6) 3.235 (4) 1.599 (7) 2.169 (5) 1.644 (6) 2.126 (6) 2.231 (6) 3.856 (4) 

0.75 (0◦) 0.425 (10) 0.586 (11) 0.407 (9) 0.518 (10) 0.342 (9) 0.408 (9) 0.505 (10) 0.794 (11) 
(0◦/90◦) 0.628 (5) 0.704 (5) 0.500 (6) 0.542 (6) 0.480 (5) 0.521 (5) 0.569 (5) 0.642 (5) 
(0◦/90◦/0◦) 0.637 (8) 0.877 (8) 0.569 (8) 0.692 (7) 0.573 (6) 0.694 (7) 0.588 (8) 0.974 (10) 
(90◦/0◦/90◦) 1.302 (4) 1.680 (3) 1.001 (4) 1.200 (4) 0.942 (4) 1.078 (4) 1.517 (4) 2.116 (3) 
(0◦/90◦/0◦/90◦) 1.231 (5) 1.629 (5) 0.840 (6) 1.092 (6) 0.864 (5) 1.066 (5) 1.240 (5) 1.600 (5) 
(0◦/90◦/90◦/0◦) 0.935 (7) 1.278 (7) 0.752 (6) 0.922 (6) 0.837 (7) 0.958 (5) 0.877 (9) 1.460 (8) 
(90◦/0◦/0◦/90◦) 1.393 (4) 1.841 (4) 1.010 (5) 1.176 (4) 0.972 (5) 1.106 (4) 1.621 (4) 2.293 (3) 

1.0 (0◦) 0.274 (8) 0.333 (8) 0.261 (7) 0.301 (7) 0.214 (7) 0.237 (7) 0.338 (8) 0.452 (8) 
(0◦/90◦) 0.452 (5) 0.477 (4) 0.315 (5) 0.347 (5) 0.340 (5) 0.372 (4) 0.420 (5) 0.443 (4) 
(0◦/90◦/0◦) 0.403 (7) 0.5007 (7) 0.354 (6) 0.410 (6) 0.379 (5) 0.422 (5) 0.404 (7) 0.558 (7) 
(90◦/0◦/90◦) 1.072 (3) 1.254 (3) 0.854 (3) 0.937 (3) 0.744 (4) 0.853 (3) 1.266 (3) 1.691 (3) 
(0◦/90◦/0◦/90◦) 0.848 (4) 1.024 (4) 0.594 (5) 0.685 (5) 0.644 (4) 0.694 (4) 0.845 (4) 1.009 (4) 
(0◦/90◦/90◦/0◦) 0.608 (4) 0.746 (5) 0.508 (5) 0.577 (5) 0.542 (4) 0.609 (4) 0.600 (6) 0.837 (6) 
(90◦/0◦/0◦/90◦) 1.106 (3) 1.269 (3) 0.722 (4) 0.857 (4) 0.694 (4) 0.779 (4) 1.336 (3) 1.710 (3)  
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Table 6 
Variation of the ND-LCP and circumferential wave numbers of single- and multilayer cylindrical shells consisting of uniform and FG-NCLs according to L/R with T =
700 (K).  

L/R Number and arrangement of layers PLcr
1 × 100, (ncr), T = 500 (K) 

U V ◊ X 

SDT KLT SDT KLT SDT KLT SDT KLT 

0.25 (0◦) 1.549 (24) 5.183 (32) 1.593 (23) 4.525 (28) 1.513 (23) 3.571 (28) 1.627 (24) 7.054 (33) 
(0◦/90◦) 2.594 (17) 5.272 (13) 2.153 (18) 4.404 (17) 2.232 (14) 3.711 (13) 2.467 (17) 4.724 (13) 
(0◦/90◦/0◦) 2.013 (26) 7.644 (25) 2.080 (18) 5.852 (21) 2.362 (20) 5.920 (20) 1.779 (24) 8.600 (29) 
(90◦/0◦/90◦) 2.955 (30) 7.984 (7) 2.900 (16) 6.100 (8) 3.101 (20) 6.024 (8) 2.715 (29) 9.128 (6) 
(0◦/90◦/0◦/90◦) 2.871 (38) 12.970 (13) 2.541 (34) 8.880 (16) 3.122 (21) 8.248 (13) 2.551 (38) 12.680 (13) 
(0◦/90◦/90◦/0◦) 2.482 (20) 11.040 (20) 2.412 (28) 7.496 (16) 2.895 (23) 7.760 (15) 2.044 (30) 12.790 (23) 
(90◦/0◦/0◦/90◦) 3.012 (40) 11.140 (8) 2.966 (22) 7.596 (10) 3.182 (23) 7.808 (11) 2.745 (40) 12.990 (7) 

0.5 (0◦) 0.736 (14) 1.297 (16) 0.726 (13) 1.138 (14) 0.636 (13) 0.896 (14) 0.831 (13) 1.767 (16) 
(0◦/90◦) 1.154 (8) 1.386 (7) 0.898 (8) 1.120 (8) 0.854 (8) 0.989 (7) 1.031 (7) 1.248 (7) 
(0◦/90◦/0◦) 1.083 (13) 1.921 (13) 0.961 (10) 1.481 (11) 1.045 (9) 1.490 (10) 0.970 (13) 2.154 (15) 
(90◦/0◦/90◦) 1.835 (5) 2.545 (4) 1.496 (5) 1.946 (5) 1.479 (5) 1.795 (5) 2.002 (5) 3.245 (4) 
(0◦/90◦/0◦/90◦) 1.903 (8) 3.328 (6) 1.420 (8) 2.267 (8) 1.578 (8) 2.148 (7) 1.831 (8) 3.260 (6) 
(0◦/90◦/90◦/0◦) 1.452 (10) 2.770 (10) 1.281 (9) 1.926 (8) 1.400 (9) 1.979 (8) 1.339 (12) 3.210 (12) 
(90◦/0◦/0◦/90◦) 2.059 (6) 3.185 (4) 1.561 (6) 2.140 (5) 1.600 (6) 2.089 (6) 2.222 (6) 3.797 (4) 

0.75 (0◦) 0.428 (9) 0.581 (11) 0.405 (9) 0.514 (10) 0.340 (9) 0.405 (9) 0.504 (10) 0.787 (11) 
(0◦/90◦) 0.643 (5) 0.696 (5) 0.478 (6) 0.536 (6) 0.478 (5) 0.515 (5) 0.564 (5) 0.635 (5) 
(0◦/90◦/0◦) 0.637 (8) 0.864 (8) 0.544 (8) 0.683 (7) 0.544 (7) 0.683 (7) 0.581 (9) 0.961 (10) 
(90◦/0◦/90◦) 1.292 (4) 1.662 (3) 1.000 (4) 1.182 (4) 0.922 (4) 1.062 (4) 1.508 (4) 2.087 (3) 
(0◦/90◦/0◦/90◦) 1.168 (5) 1.602 (5) 0.862 (6) 1.075 (6) 0.921 (5) 1.050 (5) 1.173 (5) 1.572 (5) 
(0◦/90◦/90◦/0◦) 0.870 (7) 1.256 (7) 0.739 (6) 0.908 (6) 0.786 (5) 0.943 (5) 0.877 (9) 1.436 (8) 
(90◦/0◦/0◦/90◦) 1.352 (4) 1.810 (4) 0.985 (4) 1.161 (4) 0.972 (5) 1.090 (4) 1.601 (4) 2.263 (3) 

1.0 (0◦) 0.273 (8) 0.330 (8) 0.259 (7) 0.299 (7) 0.213 (7) 0.235 (7) 0.336 (8) 0.448 (8) 
(0◦/90◦) 0.428 (4) 0.472 (4) 0.312 (5) 0.343 (5) 0.348 (5) 0.368 (4) 0.420 (5) 0.439 (4) 
(0◦/90◦/0◦) 0.403 (7) 0.500 (6) 0.336 (6) 0.405 (6) 0.369 (6) 0.416 (5) 0.404 (7) 0.551 (7) 
(90◦/0◦/90◦) 1.048 (3) 1.237 (3) 0.798 (4) 0.927 (3) 0.734 (4) 0.843 (3) 1.259 (3) 1.665 (3) 
(0◦/90◦/0◦/90◦) 0.828 (4) 1.007 (4) 0.560 (5) 0.674 (5) 0.603 (4) 0.684 (4) 0.801 (4) 0.993 (4) 
(0◦/90◦/90◦/0◦) 0.556 (5) 0.733 (5) 0.487 (5) 0.568 (5) 0.542 (4) 0.600 (4) 0.600 (6) 0.824 (6) 
(90◦/0◦/0◦/90◦) 1.088 (3) 1.252 (3) 0.732 (4) 0.845 (4) 0.694 (4) 0.767 (4) 1.282 (3) 1.685 (3)   

T = 700 (K) 
0.25 (0◦) 1.549 (24) 5.161 (32) 1.592 (23) 4.506 (28) 1.512 (23) 3.557 (28) 1.627 (24) 7.022 (33) 

(0◦/90◦) 2.596 (18) 5.252 (12) 2.153 (18) 4.460 (18) 2.215 (16) 3.681 (13) 2.460 (14) 4.704 (13) 
(0◦/90◦/0◦) 2.024 (25) 7.588 (25) 1.998 (21) 5.812 (21) 2.353 (19) 5.876 (20) 1.779 (24) 8.540 (29) 
(90◦/0◦/90◦) 2.951 (30) 7.920 (7) 2.900 (16) 6.064 (8) 3.073 (14) 5.980 (8) 2.713 (30) 9.064 (6) 
(0◦/90◦/0◦/90◦) 2.862 (39) 12.850 (13) 2.537 (26) 8.804 (16) 3.100 (22) 8.188 (12) 2.543 (40) 12.560 (13) 
(0◦/90◦/90◦/0◦) 2.428 (28) 10.940 (20) 2.405 (23) 7.436 (16) 2.907 (20) 7.688 (15) 2.102 (28) 12.680 (23) 
(90◦/0◦/0◦/90◦) 3.011 (40) 11.040 (8) 2.967 (23) 7.540 (10) 3.182 (21) 7.740 (11) 2.746 (40) 12.880 (7) 

0.5 (0◦) 0.735 (14) 1.292 (16) 0.725 (13) 1.133 (14) 0.635 (13) 0.892 (14) 0.831 (13) 1.759 (16) 
(0◦/90◦) 1.091 (7) 1.377 (7) 0.884 (9) 1.168 (7) 0.872 (7) 0.982 (7) 1.016 (6) 1.242 (7) 
(0◦/90◦/0◦) 1.039 (12) 1.907 (12) 0.952 (11) 1.472 (11) 1.028 (8) 1.479 (10) 0.970 (13) 2.141 (15) 
(90◦/0◦/90◦) 1.809 (5) 2.526 (4) 1.501 (6) 1.934 (5) 1.446 (6) 1.782 (5) 1.982 (5) 3.220 (4) 
(0◦/90◦/0◦/90◦) 1.903 (8) 3.298 (6) 1.445 (8) 2.248 (8) 1.551 (7) 2.127 (7) 1.831 (8) 3.228 (6) 
(0◦/90◦/90◦/0◦) 1.468 (10) 2.744 (10) 1.277 (8) 1.912 (8) 1.378 (8) 1.962 (8) 1.344 (11) 3.190 (11) 
(90◦/0◦/0◦/90◦) 2.050 (6) 3.160 (4) 1.579 (6) 2.125 (5) 1.600 (6) 2.071 (6) 2.215 (6) 3.766 (4) 

0.75 (0◦) 0.422 (10) 0.578 (11) 0.404 (9) 0.512 (10) 0.339 (9) 0.403 (9) 0.503 (10) 0.784 (11) 
(0◦/90◦) 0.623 (5) 0.692 (5) 0.473 (6) 0.533 (6) 0.478 (5) 0.512 (5) 0.578 (5) 0.633 (5) 
(0◦/90◦/0◦) 0.612 (8) 0.857 (8) 0.567 (9) 0.678 (7) 0.573 (6) 0.678 (7) 0.588 (8) 0.956 (10) 
(90◦/0◦/90◦) 1.282 (4) 1.652 (3) 0.990 (4) 1.175 (4) 0.902 (4) 1.054 (4) 1.497 (4) 2.075 (3) 
(0◦/90◦/0◦/90◦) 1.233 (5) 1.586 (5) 0.898 (6) 1.066 (6) 0.870 (5) 1.040 (5) 1.111 (5) 1.558 (5) 
(0◦/90◦/90◦/0◦) 0.902 (7) 1.244 (7) 0.738 (6) 0.902 (6) 0.750 (6) 0.935 (5) 0.862 (8) 1.424 (8) 
(90◦/0◦/0◦/90◦) 1.383 (4) 1.794 (4) 1.010 (5) 1.154 (4) 0.947 (5) 1.082 (4) 1.591 (4) 2.248 (3) 

1.0 (0◦) 0.272 (8) 0.329 (8) 0.258 (7) 0.298 (7) 0.212 (7) 0.234 (7) 0.335 (8) 0.446 (8) 
(0◦/90◦) 0.435 (4) 0.469 (4) 0.307 (5) 0.342 (5) 0.335 (5) 0.366 (4) 0.401 (5) 0.438 (4) 
(0◦/90◦/0◦) 0.370 (7) 0.496 (6) 0.349 (6) 0.403 (6) 0.369 (6) 0.413 (5) 0.422 (6) 0.548 (7) 
(90◦/0◦/90◦) 1.044 (3) 1.228 (3) 0.778 (4) 0.922 (3) 0.734 (4) 0.849 (4) 1.252 (3) 1.651 (3) 
(0◦/90◦/0◦/90◦) 0.828 (4) 0.998 (4) 0.566 (4) 0.670 (5) 0.624 (4) 0.678 (4) 0.805 (4) 0.984 (4) 
(0◦/90◦/90◦/0◦) 0.599 (6) 0.728 (5) 0.482 (5) 0.565 (5) 0.525 (5) 0.596 (4) 0.600 (6) 0.816 (6) 
(90◦/0◦/0◦/90◦) 1.071 (3) 1.243 (3) 0.712 (4) 0.839 (4) 0.674 (4) 0.760 (4) 1.300 (3) 1.671 (3)  
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for T = 700 (K), those effects occur in shells consisting of inverted 
pyramid and rhombic prism originating layers (See, Figs. 4–9). 

For all T and when the R/h ratio increases from 25 to 50, the most 
pronounced shear strains effects on the ND-LCP of multilayer shells 
occur in shells with different arrays and number of layers composed of 
layers originating from sandglass. For instance, at T = 300, 500 and 700 
(K), the most prominent transverse shear strain effects occur in the four- 
layer cylindrical shells with (0◦/90◦/90◦/0◦)-arrangement for R/h=25 
(see, Table 7). In the SDT framework, the influences of temperature rise 
on the PLcr

1sdtgenerally increase irregularly as R/hincrement. At T = 500 
(K), the most prominent influence of temperature rise on the ND-LCP 
occurs in the sandglass originating (0◦/90◦/90◦/0◦)-sequence shell, 
while at T = 700 (K), those influences on the PLcr

1sdtoccurs in the (0◦/90◦)- 
alignment shell with U-pattern for R/h = 50 (see, Table 7). 

5. Conclusions 

The multilayer cylindrical shells formed from nanocomposite layers 
made of CWCNT reinforced polymers are assumed to have four types of 
profiles based on uniform and linear distributions of mechanical prop-
erties. This study highlights the influences of geometric parameters, 
transverse shear stresses, CNT-patterns in the layers and temperature 
rise on the stability performance of multilayer cylindrical shells con-
sisting of FG-NCLs under the lateral pressure within SDT and KLT. These 
findings provide useful information for designing multilayer cylindrical 
shells composed of FG-CNT patterned layers to optimize stability under 
lateral pressure. 

Table 7 
Distribution of ND-LCP and circumferential wave numbers of single-layer and multilayer cylindrical shells consisting of FG-NCLs according to R/h with different T.  

R/h Number and arrangement of layers PLcr
1 × 100, (ncr), T = 300 (K) 

U V ◊ X 

SDT KLT SDT KLT SDT KLT SDT KLT 

25 (0◦/90◦) 0.629 (7) 0.732 (7) 0.506 (9) 0.588 (8) 0.480 (8) 0.527 (7) 0.564 (7) 0.661 (7) 
(0◦/90◦/0◦) 0.601 (11) 0.998 (13) 0.574 (10) 0.772 (11) 0.618 (11) 0.779 (10) 0.616 (12) 1.117 (15) 
(90◦/0◦/90◦) 1.142 (5) 1.445 (4) 0.911 (5) 1.072 (5) 0.877 (5) 0.986 (5) 1.299 (5) 1.816 (4) 
(0◦/90◦/90◦/0◦) 0.889 (10) 1.446 (10) 0.770 (9) 1.014 (8) 0.855 (7) 1.039 (8) 0.866 (11) 1.672 (12) 

30 (0◦/90◦) 0.389 (8) 0.433 (7) 0.310 (8) 0.346 (8) 0.298 (7) 0.315 (7) 0.356 (6) 0.392 (7) 
(0◦/90◦/0◦) 0.420 (12) 0.579 (13) 0.372 (10) 0.450 (11) 0.460 (6) 0.460 (11) 0.387 (12) 0.647 (15) 
(90◦/0◦/90◦) 0.752 (5) 0.923 (4) 0.586 (6) 0.662 (5) 0.554 (6) 0.609 (5) 0.881 (5) 1.143 (4) 
(0◦/90◦/90◦/0◦) 0.600 (11) 0.839 (10) 0.482 (9) 0.594 (9) 0.472 (7) 0.607 (8) 0.581 (11) 0.969 (12) 

40 (0◦/90◦) 0.188 (8) 0.193 (7) 0.132 (8) 0.150 (9) 0.134 (8) 0.143 (8) 0.156 (6) 0.176 (7) 
(0◦/90◦/0◦) 0.197 (14) 0.245 (13) 0.165 (10) 0.192 (11) 0.172 (10) 0.194 (10) 0.198 (14) 0.274 (15) 
(90◦/0◦/90◦) 0.383 (5) 0.434 (5) 0.284 (6) 0.324 (5) 0.258 (6) 0.291 (6) 0.466 (5) 0.581 (4) 
(0◦/90◦/90◦/0◦) 0.264 (8) 0.357 (10) 0.217 (9) 0.256 (9) 0.229 (8) 0.262 (8) 0.246 (9) 0.410 (12) 

50 (0◦/90◦) 0.098 (8) 0.105 (8) 0.070 (9) 0.079 (9) 0.074 (8) 0.077 (8) 0.091 (8) 0.095 (8) 
(0◦/90◦/0◦) 0.099 (12) 0.126 (13) 0.083 (10) 0.099 (11) 0.911 (12) 0.101 (11) 0.112 (11) 0.140 (15) 
(90◦/0◦/90◦) 0.233 (6) 0.248 (5) 0.169 (6) 0.180 (6) 0.155 (6) 0.162 (6) 0.281 (5) 0.325 (5) 
(0◦/90◦/90◦/0◦) 0.140 (9) 0.184 (10) 0.114 (9) 0.135 (9) 0.124 (8) 0.138 (8) 0.153 (13) 0.211 (12) 

T = 500 (K) 
25 (0◦/90◦) 0.654 (7) 0.723 (7) 0.489 (8) 0.581 (8) 0.484 (7) 0.520 (7) 0.565 (7) 0.654 (7) 

(0◦/90◦/0◦) 0.609 (10) 0.984 (13) 0.573 (11) 0.762 (11) 0.609 (10) 0.766 (10) 0.606 (13) 1.103 (15) 
(90◦/0◦/90◦) 1.134 (5) 1.426 (4) 0.896 (5) 1.057 (5) 0.861 (5) 0.973 (5) 1.291 (5) 1.790 (4) 
(0◦/90◦/90◦/0◦) 0.909 (10) 1.421 (10) 0.771 (9) 0.998 (8) 0.835 (8) 1.022 (8) 0.878 (9) 1.646 (12) 

30 (0◦/90◦) 0.377 (7) 0.428 (7) 0.304 (9) 0.342 (8) 0.297 (8) 0.311 (7) 0.352 (7) 0.388 (7) 
(0◦/90◦/0◦) 0.386 (13) 0.570 (13) 0.347 (11) 0.443 (11) 0.367 (9) 0.446 (10) 0.400 (13) 0.641 (14) 
(90◦/0◦/90◦) 0.733 (5) 0.913 (4) 0.577 (5) 0.654 (5) 0.540 (6) 0.600 (5) 0.881 (5) 1.128 (4) 
(0◦/90◦/90◦/0◦) 0.604 (9) 0.824 (10) 0.474 (9) 0.584 (9) 0.506 (8) 0.596 (8) 0.570 (13) 0.953 (12) 

40 (0◦/90◦) 0.159 (7) 0.191 (7) 0.145 (7) 0.148 (9) 0.133 (8) 0.141 (8) 0.171 (8) 0.174 (7) 
(0◦/90◦/0◦) 0.186 (15) 0.241 (13) 0.158 (12) 0.189 (11) 0.154 (8) 0.191 (10) 0.191 (13) 0.270 (15) 
(90◦/0◦/90◦) 0.373 (5) 0.428 (5) 0.282 (6) 0.319 (6) 0.258 (6) 0.287 (6) 0.463 (5) 0.574 (5) 
(0◦/90◦/90◦/0◦) 0.284 (7) 0.350 (10) 0.221 (9) 0.252 (9) 0.226 (7) 0.258 (8) 0.285 (9) 0.403 (12) 

50 (0◦/90◦) 0.098 (7) 0.104 (8) 0.068 (10) 0.081 (10) 0.067 (8) 0.076 (8) 0.085 (7) 0.095 (8) 
(0◦/90◦/0◦) 0.099 (11) 0.124 (13) 0.090 (10) 0.101 (10) 0.801 (8) 0.099 (11) 0.106 (13) 0.139 (15) 
(90◦/0◦/90◦) 0.227 (6) 0.245 (5) 0.167 (6) 0.178 (6) 0.150 (6) 0.160 (6) 0.274 (5) 0.320 (5) 
(0◦/90◦/90◦/0◦) 0.152 (10) 0.191 (10) 0.104 (9) 0.133 (9) 0.116 (9) 0.136 (8) 0.160 (13) 0.207 (12) 

T = 700 (K) 
25 (0◦/90◦) 0.633 (7) 0.718 (7) 0.489 (8) 0.578 (8) 0.467 (7) 0.516 (7) 0.587 (6) 0.650 (7) 

(0◦/90◦/0◦) 0.616 (12) 0.977 (13) 0.573 (11) 0.757 (11) 0.589 (10) 0.761 (10) 0.595 (13) 1.096 (15) 
(90◦/0◦/90◦) 1.118 (5) 1.418 (4) 0.895 (5) 1.050 (5) 0.850 (6) 0.966 (5) 1.283 (5) 1.780 (4) 
(0◦/90◦/90◦/0◦) 0.853 (9) 1.408 (10) 0.761 (10) 0.991 (8) 0.829 (9) 1.013 (8) 0.879 (12) 1.630 (12) 

30 (0◦/90◦) 0.390 (8) 0.425 (7) 0.301 (9) 0.340 (8) 0.290 (8) 0.309 (7) 0.356 (7) 0.386 (7) 
(0◦/90◦/0◦) 0.400 (13) 0.566 (13) 0.366 (11) 0.440 (11) 0.344 (10) 0.442 (10) 0.386 (13) 0.635 (15) 
(90◦/0◦/90◦) 0.742 (5) 0.907 (4) 0.577 (5) 0.650 (5) 0.527 (6) 0.596 (5) 0.871 (5) 1.121 (4) 
(0◦/90◦/90◦/0◦) 0.559 (10) 0.817 (10) 0.473 (9) 0.580 (9) 0.486 (9) 0.591 (8) 0.561 (11) 0.945 (12) 

40 (0◦/90◦) 0.177 (8) 0.190 (7) 0.126 (9) 0.148 (9) 0.128 (8) 0.140 (8) 0.161 (8) 0.174 (7) 
(0◦/90◦/0◦) 0.180 (12) 0.239 (13) 0.154 (11) 0.188 (11) 0.171 (9) 0.189 (10) 0.203 (12) 0.269 (15) 
(90◦/0◦/90◦) 0.373 (5) 0.425 (5) 0.280 (6) 0.317 (6) 0.258 (6) 0.285 (6) 0.455 (5) 0.569 (5) 
(0◦/90◦/90◦/0◦) 0.264 (8) 0.347 (10) 0.222 (8) 0.251 (9) 0.226 (9) 0.256 (8) 0.292 (12) 0.400 (13) 

50 (0◦/90◦) 0.098 (7) 0.103 (8) 0.065 (9) 0.078 (9) 0.071 (9) 0.076 (8) 0.087 (8) 0.094 (8) 
(0◦/90◦/0◦) 0.111 (15) 0.123 (13) 0.080 (11) 0.098 (11) 0.085 (10) 0.098 (10) 0.113 (10) 0.138 (15) 
(90◦/0◦/90◦) 0.226 (5) 0.243 (5) 0.165 (6) 0.177 (6) 0.157 (7) 0.159 (6) 0.277 (5) 0.318 (5) 
(0◦/90◦/90◦/0◦) 0.145 (9) 0.179 (10) 0.110 (9) 0.132 (9) 0.111 (8) 0.137 (9) 0.142 (11) 0.206 (12)  
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Fig. 4. Distribution of ND-LCP and circumferential wave numbers of (0◦) 
single-layer and, (0◦/90◦/0◦/90◦) and (90◦/0◦/0◦/90◦)-sequence cylindrical 
shells consisting of uniform and FG-NCLs within SDT according to R/h for T =
300 (K). 

Fig. 5. Distribution of ND-LCP and circumferential wave numbers of (0◦) 
single-layer and, (0◦/90◦/0◦/90◦) and (90◦/0◦/0◦/90◦)-sequence cylindrical 
shells consisting of uniform and FG-NCLs within KLT according to R/h for T =
300 (K). 

Fig. 6. Distribution of ND-LCP and circumferential wave numbers of (0◦) 
single-layer and, (0◦/90◦/0◦/90◦) and (90◦/0◦/0◦/90◦)-sequence cylindrical 
shells consisting of uniform and FG-NCLs within SDT according to R/h for T =
500 (K). 

Fig. 7. Distribution of ND-LCP and circumferential wave numbers of (0◦) 
single-layer and, (0◦/90◦/0◦/90◦) and (90◦/0◦/0◦/90◦)-sequence cylindrical 
shells consisting of uniform and FG-NCLs within KLT according to R/h for T =
500 (K). 

Fig. 8. Distribution of ND-LCP and circumferential wave numbers of (0◦) 
single-layer and, (0◦/90◦/0◦/90◦) and (90◦/0◦/0◦/90◦)-sequence cylindrical 
shells consisting of uniform and FG-NCLs within SDT according to R/h for T =
700 (K). 

Fig. 9. Distribution of ND-LCP and circumferential wave numbers of (0◦) 
single-layer and, (0◦/90◦/0◦/90◦) and (90◦/0◦/0◦/90◦)-sequence cylindrical 
shells consisting of uniform and FG-NCLs within KLT according to R/h for T =
700 (K). 
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Appendix A 

Here Lp1q1 (p1,q1 = 1,2, ...,4)are differential operators and are defined as: 

L11 = h
∂2

∂x2

[

(H11 − H31)
∂2

∂y2 + H12
∂2

∂x2

]

, L12 = −
∂2

∂x2

[

H13
∂2

∂x2 + (H14 + H32)
∂2

∂y2

]

,

L13 =
∂
∂x

[

H15
∂2

∂x2 + H35
∂2

∂y2 − Π3

]

, L14 = (H18 + H38)
∂3

∂x2∂y

L21 = h
∂2

∂y2

[

H21
∂2

∂y2 + (H22 − H31)
∂2

∂x2

]

, L22 = −
∂2

∂y2

[

(H32 + H23)
∂2

∂x2 + H24
∂2

∂y2

]

,

L23 = (H35 + H25)
∂3

∂x∂y2, L24 =
∂
∂y

(

H38
∂2

∂x2 + H28
∂2

∂y2 − Π4

)

L31 = h
[

S11
∂4

∂y4 + (S12 + S21 + S31)
∂4

∂x2∂y2 + S22
∂4

∂x4

]

L32 =
1
R

∂2

∂x2 − S23
∂4

∂x4 − (S24 + S13 − S32)
∂4

∂x2∂y2 − S14
∂4

∂y4

L33 =
∂
∂x

[

S25
∂2

∂x2 + (S15 + S35)
∂2

∂y2

]

, L34 =
∂
∂y

[

(S28 + S38)
∂2

∂x2 + S18
∂2

∂y2

]

L41 =
h
R

∂2

∂x2, L42 = −
∂2

∂y2, L43 = Π3
∂
∂x, L44 = Π4

∂
∂y.

(A1)  

where Π3 = Π4 =
∑N

i=1[f (i)(zi) − f (i)(zi− 1)] and the following definitions apply: 

H11 = A1
11S11 + A1

12S21, H12 = A1
11S12 + A1

12S22, H13 = A1
11S13 + A1

12S23 + A2
11,H14 = A1

11S14 + A1
12S24 + H2

12,

H15 = A1
11S15 + A1

12S25 + A1
15,H18 = A1

11S18 + A1
12S28 + A1

18, H21 = A1
21S11 + A1

22S21,H22 = A1
21S12 + A1

22S22,

H23 = A1
21S13 + A1

22S23 + A2
21, H24 = A1

21S14 + A1
22S24 + A2

22, H25 = A1
21S15 + A1

22S25 + A1
25,

H28 = A1
21S18 + A1

22S28 + A1
28,H31 = A1

66S31, H32 = A1
66S32 + 2A2

66, H35 = A1
35 − A1

66S35, H38 = A1
38 − A1

66S38,

S11 =
A0

22

Δ
, S12 = −

A0
12

Δ
, S13 =

A0
12A

1
21 − A1

11A
0
22

Δ
, S14 =

A0
12A

1
22 − A1

12A
0
22

Δ
, S15 =

A0
25A

0
12 − A0

15A
0
22

Δ
,

S18 =
A0

28A
0
12 − A0

18A
0
22

Δ
, S21 = −

A0
21

Δ
, S22 =

A0
11

Δ
, S23 =

A1
11A

0
21 − A1

21A
0
11

Δ
, S24 =

A1
12A

0
21 − A1

22A
0
11

Δ
,

S25 =
A0

15A
0
21 − A0

25A
0
11

Δ
, S28 =

A0
18A

0
21 − A0

28A
0
11

Δ
, S31 =

1
A0

66
, S32 = −

2A1
66

A0
66
, S35 =

A0
35

A0
66
, S38 =

A0
38

A0
66
,

Δ = A0
11A

0
22 − A0

12A
0
21.

(A2)  

in which 
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Ak1
11 =

∑N

i=1

∫zi

zi− 1

K(i)
11(z,T)z

k1 dz, Ak1
12 =

∑N

i=1

∫zi

zi− 1

K(i)
12(z,T)z

k1 dz =
∑N

i=1

∫zi

zi− 1

K(i)
21(z,T)z

k1 dz = Ak1
21, A

k1
22 =

∑N

i=1

∫zi

zi− 1

K(i)
22(z,T)z

k1 dz,

Ak1
66 =

∑N

i=1

∫zi

zi− 1

K(i)
66(z,T)z

k1 dz, Ak2
15 =

∑N

i=1

∫zi

zi− 1

K(i)
11(z,T)Π

(i)
1(z,T)z

k2 dz,Ak2
18 =

∑N

i=1

∫zi

zi− 1

K(i)
12(z,T)Π

(i)
2(z,T)z

k2 dz,

Ak2
25 =

∑N

i=1

∫zi

zi− 1

K(i)
21(z,T)Π

(i)
1(z,T)z

k2 dz, Ai2
28 =

∑N

i=1

∫zi

zi− 1

K(i)
22(z,T)Π

(i)
2(z,T)z

k2 dz, Ai2
35 =

∑N

i=1
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zi− 1

K(i)
66(z,T)Π
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Ak2
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i=1
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zi− 1

K(i)
66(z,T)Π

(i)
2(z,T)z

k2 dz, k1 = 0, 1, 2; k2 = 0, 1.

(A3)  

Appendix B 

Fp1q1 (i, j= 1,2, 3,4) are given by, 

F11 = h
[

(H11 − H31)
(n
R

)2
+ H12

(mπ
L

)2
](mπ

L

)2
, F12 =

[

(H14 + H32)
(n
R

)2
+ H13

(mπ
L

)2
](mπ

L

)2
,

F13 =

[

H15

(mπ
L

)2
+ H35

(n
R

)2
+ Π3

]
mπ
a
, F14 = (H18 + H38)

n
R

(mπ
L

)2
,

F21 = h
[

H21

(n
R

)2
+ (H22 − H31)

(mπ
L

)2
](n

R

)2
, F22 =

[

(H32 + H23)
(mπ
L

)2
+ H24

(n
R

)2
](n

R

)2
,

F23 = (H25 + H35)
(mπ
L

)(n
R

)2
, F24 =

[

H28

(n
R

)2
+ H38

(mπ
L

)2
+ Π4

]
n
R
,

F31 = h
[

S22

(mπ
L

)4
+ (S12 + S21 + S31)

(mnπ
LR

)2
+ S11

(n
R

)4
]

,

F32 = S23

(mπ
L

)4
+ (S24 + S13 + S32)

(mnπ
LR

)2
+ S14

(n
R

)4
+

1
R

(mπ
L

)2
,

F33 =

[

S25

(mπ
L

)2
+ (S15 + S35)

(n
R

)2
]

mπ
L
, F34 =

[

(S28 + S38)
(mπ
L

)2
+ S18

(n
R

)2
]

n
R
,

F41 =
h
R

(mπ
L
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(n
R
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, F43 = Π3

mπ
L
, F44 = Π4

n
R

(B1)  

References 

[1] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature 363 
(1993) 603–604, https://doi.org/10.1038/363603a0. 

[2] K. Suzuki, S. Nomura, On elastic properties of single-walled carbon nanotubes as 
composite reinforcing fillers, J. Compos. Mater. 41 (9) (2007) 1123–1135, https:// 
doi.org/10.1177/0021998306067298. 

[3] T.W. Ebbesen, Carbon Nanotubes: Preparation and Properties, CRC press, 1996. 
[4] A. Garg, H.D. Chalak, M.Q. Belarbi, A.M. Zenkour, R. Sahoo, Estimation of carbon 

nanotubes and their applications as reinforcing composite materials-an engineering 
review, Compos. Struct. 272 (2021), 114234, https://doi.org/10.1016/j. 
compstruct.2021.114234. 

[5] K.I. Winey, R.A. Vaia, Polymer nanocomposites, MRS Bull. 32 (4) (2011) 314–322, 
https://doi.org/10.1557/mrs2007.229. 

[6] M.A.L. Manchado, L. Valentini, J. Biagiotti, J.M. Kenny, Thermal and mechanical 
properties of single-walled carbon nanotubes–polypropylene composites prepared 
by melt processing, Carbon N Y 43 (2005) 1499–1505, https://doi.org/10.1016/j. 
carbon.2005.01.031. 

[7] N.K. Votarikari, S.K. Gugulothu, Influence of nanofluid in thermal and mechanical 
properties of NR alumina polymer nanocomposites, J. Compos. Part C 4 (2021), 
100094, https://doi.org/10.1016/j.jcomc.2023.100361. 

[8] T. Mishra, P. Mandal, A.K. Rout, D.A. Sahoo, State-of-the-art review on potential 
applications of natural fiber-reinforced polymer composite filled with inorganic 
nanoparticle, J. Compos. Part C 9 (2022), 100298, https://doi.org/10.1016/j. 
jcomc. 2022.100298. 

[9] Y. Han, J. Elliott, Molecular dynamics simulations of the elastic properties of 
polymer/carbon nanotube composites, Comput. Mater. Sci. 39 (2007) 315–323, 
https://doi.org/10.1016/j.commatsci.2006.06.011. 

[10] H.-S. Shen, Nonlinear bending of functionally graded carbon nanotube-reinforced 
composite plates in thermal environments, Compos. Struct. 91 (2009) 9–19, 
https://doi.org/10.1016/j.compstruct.2009.04.026. 

[11] H.-S. Shen, Postbuckling of nanotube-reinforced composite cylindrical shells in 
thermal environments, part II: pressure-loaded shells, Compos. Struct. 93 (2011) 
2496–2503, https://doi.org/10.1016/j.compositesb.2013.04.034. 

[12] H.-S. Shen, Postbuckling of nanotube-reinforced composite cylindrical panels 
resting on elastic foundations subjected to lateral pressure in thermal 
environments, Eng. Struct. 122 (2016) 174–183, https://doi.org/10.1016/j. 
engstruct.2016.05.004. 

[13] S. Chakraborty, T. Dey, R. Kumar, Stability and vibration analysis of CNT- 
reinforced functionally graded laminated composite cylindrical shell panels using 
semi-analytical approach, Compos. Part B Eng. 168 (2019) 1–14, https://doi.org/ 
10.1016/j.compositesb.2018.12.051. 

[14] P.T. Hieu, H.V. Tung, Postbuckling behavior of CNT-reinforced composite 
cylindrical shell surrounded by an elastic medium and subjected to combined 
mechanical loads in thermal environments, J. Thermoplastic Compos. Mater. 32 
(10) (2019) 1319–1346, https://doi.org/10.1177/0892705718796551. 

[15] P.T. Hieu, H.V. Tung, Thermomechanical postbuckling of pressure-loaded CNT- 
reinforced composite cylindrical shells under tangential edge constraints and 
various temperature conditions, Polym. Compos. 41 (1) (2020) 244–257, https:// 
doi.org/10.1002/pc.25365. 

[16] A.R. Ghasemi, M. Soleymani, A new efficient buckling investigation of functionally 
graded CNT/fiber/polymer/metal composite panels exposed to hydrostatic 
pressure considering simultaneous manufacturing-induced agglomeration and 
imperfection issues, Euro. Phys. J. Plus 136 (12) (2021) 1220, https://doi.org/ 
10.1140/epjp/s13360-021-02197-y. 

[17] M. Nejati, R. Dimitri, R. Tornabene, M.H. Yas, Thermal buckling of nanocomposite 
stiffened cylindrical shells reinforced by functionally graded wavy carbon 
nanotubes with temperature-dependent properties, Appl. Sci. 7 (12) (2017) 1223, 
https://doi.org/10.3390/app7121223. 

[18] M. Bacciocchi, Buckling analysis of three-phase CNT/polymer/fiber functionally 
graded orthotropic plates: influence of the non-uniform distribution of the oriented 
fibers on the critical load, Eng. Struct. 223 (2020), 111176, https://doi.org/ 
10.1016/j.engstruct.2020.111176. 

M. Avey et al.                                                                                                                                                                                                                                   

https://doi.org/10.1038/363603a0
https://doi.org/10.1177/0021998306067298
https://doi.org/10.1177/0021998306067298
http://refhub.elsevier.com/S2666-6820(23)00073-7/sbref0003
https://doi.org/10.1016/j.compstruct.2021.114234
https://doi.org/10.1016/j.compstruct.2021.114234
https://doi.org/10.1557/mrs2007.229
https://doi.org/10.1016/j.carbon.2005.01.031
https://doi.org/10.1016/j.carbon.2005.01.031
https://doi.org/10.1016/j.jcomc.2023.100361
https://doi.org/10.1016/j.jcomc. 2022.100298
https://doi.org/10.1016/j.jcomc. 2022.100298
https://doi.org/10.1016/j.commatsci.2006.06.011
https://doi.org/10.1016/j.compstruct.2009.04.026
https://doi.org/10.1016/j.compositesb.2013.04.034
https://doi.org/10.1016/j.engstruct.2016.05.004
https://doi.org/10.1016/j.engstruct.2016.05.004
https://doi.org/10.1016/j.compositesb.2018.12.051
https://doi.org/10.1016/j.compositesb.2018.12.051
https://doi.org/10.1177/0892705718796551
https://doi.org/10.1002/pc.25365
https://doi.org/10.1002/pc.25365
https://doi.org/10.1140/epjp/s13360-021-02197-y
https://doi.org/10.1140/epjp/s13360-021-02197-y
https://doi.org/10.3390/app7121223
https://doi.org/10.1016/j.engstruct.2020.111176
https://doi.org/10.1016/j.engstruct.2020.111176


Composites Part C: Open Access 12 (2023) 100417

13

[19] E. Sobhani, A.M. Masoodi, A comprehensive shell approach for vibration of porous 
nano-enriched polymer composite coupled spheroidal-cylindrical shells, Compos. 
Struct. 289 (2022), 115464, https://doi.org/10.1016/j.compstruct.2022.115464. 

[20] A. Muc, S. Kubis, L. Bratek, M. Muc-Wierzgoń, Higher order theories for the 
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