18 research outputs found

    Stability of the H-cluster under whole-cell conditions-formation of an Htrans-like state and its reactivity towards oxygen.

    Get PDF
    Hydrogenases are metalloenzymes that catalyze the reversible oxidation of molecular hydrogen into protons and electrons. For this purpose, [FeFe]-hydrogenases utilize a hexanuclear iron cofactor, the H-cluster. This biologically unique cofactor provides the enzyme with outstanding catalytic activities, but it is also highly oxygen sensitive. Under in vitro conditions, oxygen stable forms of the H-cluster denoted Htrans and Hinact can be generated via treatment with sulfide under oxidizing conditions. Herein, we show that an Htrans-like species forms spontaneously under intracellular conditions on a time scale of hours, concurrent with the cells ceasing H2 production. Addition of cysteine or sulfide during the maturation promotes the formation of this H-cluster state. Moreover, it is found that formation of the observed Htrans-like species is influenced by both steric factors and proton transfer, underscoring the importance of outer coordination sphere effects on H-cluster reactivity

    Nouveaux matériaux d'électrode bioinspirés et biohybrides pour la production de l'hydrogÚne

    No full text
    Hydrogenase enzymes were first discovered in the 1930s. The first report of {Fe2(ÎŒ-S2)(CO)6} based catalyst was reported in 1928 without any information of [FeFe] hydrogenases. The first crystal structure of [FeFe] hydrogenases was reported in 1990s, which triggered the development of bioinspired catalysis based on the {Fe2(ÎŒ-S2)(CO)6} core due to its structural similarities with the [2Fe]H cofactor.19,91 Yet, it remains a highly active research field with continued efforts to find the optimum balance between activity, durability, sustainability and cost of the catalysts. This always motivates me to look for a better catalytic system, and also resulted in this thesis. In the eSCALED project, our objective was to develop a noble metal free bioinspired device for H2 production or CO2 reduction using solar electrolysis. I was responsible for developing cathode materials for H2 production. Considering that objective and my personal motivation, my overall doctoral journey is summarised in the following manner.In Paper I, we aimed straight towards an immobilisation strategy for a bioinspired {Fe2(ÎŒ-S2)(CO)6} based active sites, as this constitutes a key step for molecular based electrode materials for device applications. The anchoring method we settled for was π-π interactions, utilizing pyrene. We showed an improvement in loading capacity on the electrode as compared to previous reports, and an appreciable electronic communication between electrodes and catalysts. Finally, and importantly, the anchoring group appeared highly stable during catalysis. Still, the activity remained substandard under aqueous condition due to poor interaction with substrate (H+ from buffer) and degradation of the catalyst/active site under catalytic conditions.In Paper II, we aimed at encapsulating the [FeFe] site inside a water-soluble polymeric scaffold, to provide a basic outer coordination sphere along with an anchoring group in a single platform. The strategy met our expectations with regards to improved activity, but decreased the loading of active sites 4-5-fold, compared to the diiron complex deprived of polymer scaffold described in Paper I. Unfortunately, the polymeric scaffold could not protect the active site from degradation. In addition, we performed a life cycle assessment study to further highlight the importance of the metallopolymer strategy from a sustainability perspective.In Paper III, we redesigned our metallopolymer by replacing the active site with what was expected to be a more robust diiron active site. In parallel, the new design could allow to tune and increase the fraction of active sites in the polymer chain. However, we found that the active site still remains the weak link in this assembly. Hence further improvement is still required.On a more positive note, it is noteworthy to mention that we demonstrated through Papers II and III, that the metallopolymer approach is a highly promising for their employment in an energy conversion context. Clearly this could be extended to various energy conversion applications in future.Finally, in Paper IV, we explored a biohybrid system by preparing and characterising semisynthetic hydrogenases. The detailed analysis provides some valuable insight towards the design of bioinspired catalysts for H+/H2 conversion. For example, replacing one CN ligand with a CO ligand in [2Fe]H resulted in a semisynthetic hydrogenase with very different properties i.e. activity, sensitivity towards inhibitors etc., depending on the host protein scaffold.In closing, I think the insights that we learned throughout this thesis work motivates taking inspiration from Nature in the continued search for an ideal catalyst. The metallopolymer approach is promising. Here, the design of active and robust catalytic sites is crucial. Finally, evaluating environmental footprint of the product is essential from a sustainability perspective.Le changement climatique et la crise Ă©nergĂ©tique qui rĂ©sulte de l’abandon progressif des ressources fossiles constituent de vrais dĂ©fis pour l’humanitĂ©.Dans ce contexte, l’utilisation de l’hydrogĂšne molĂ©culaire (H2) pourrait ĂȘtre une alternative potentielle aux combustibles fossiles pour dĂ©ployer un systĂšme Ă©nergĂ©tique sans Ă©mission nette. L’hydrogĂšne permet en effet de stocker lors de sa production par Ă©lectrolyse Ă  partir d’eau une grande quantitĂ© d'Ă©nergie dans sa liaison chimique. Plus important encore, l'utilisation de l’hydrogĂšne dans une pile Ă  combustible pour produire de l'Ă©lectricitĂ© co-gĂ©nĂšre de la chaleur et ne produit que de l'eau comme sous-produit. Par consĂ©quent, la production d’hydrogĂšne en utilisant une source d’énergie renouvelable est une technologie trĂšs prometteuse et les rapports prospectifs rĂ©cent prĂ©disent un dĂ©ploiement massif de ces technologies de production d’«hydrogĂšne vert ».L’électrolyse de l’eau consiste Ă  utiliser de l'Ă©lectricitĂ© pour dĂ©composer l’eau en oxygĂšne (O2) et hydrogĂšne(H2). La nature multi-Ă©lectronique de cette rĂ©action entraĂźne une cinĂ©tique lente et des catalyseurs sont nĂ©cessaires pour pouvoir la rĂ©aliser avec un bon rendement Ă©nergĂ©tique et une forte puissance. Ces catalyseurs doivent ĂȘtre bon marchĂ©, actifs, stables et prĂ©senter un faible impact environemental.Les enzymes hydrogĂ©nases sont des catalyseurs naturels qui rĂ©alisent la production d’hydrogĂšne Ă  partir d'eau avec un excellent rendement Ă  des potentiels proches des valeurs thermodynamiques en utilisant des mĂ©taux de transition 3d abondants. Ces enzymes sont donc de bons cndidats pour des applications de production biotechnologiques de production d’hydrogĂšne vert. En parallĂšle, les sites actifs de ces enzymes sont une source d’inspiration pour le dĂ©veloppement de catalyseurs synthĂ©tiques pour les mĂȘmes applications. Aujourd’hui, ces recherches se structurent autour de trois approches complĂ©mentaires :(i) mieux comprendre le fonctionnement des hydrogĂ©nases et dĂ©velopper leurs applications.(ii) utiliser cette connaissance pour dĂ©velopper des catalyseurs bio-inspirĂ©s plus performants et les faire fonctionner dans des dispositifs expĂ©rimentaux de production de H2 par Ă©lectrolyse de l'eau.(iii) Évaluer l'empreinte environnementale des catalyseurs dĂ©veloppĂ©s.Ma thĂšse visait Ă  contribuer aux trois points susmentionnĂ©s comme suit :Dans les articles I, II et III, nous nous sommes concentrĂ©s sur le dĂ©veloppement de catalyseurs bio-inspirĂ©s Ă  base de matrices polymĂšres et en les optimisant pour fabriquer des matĂ©riaux d'Ă©lectrode pouvant ĂȘtre intĂ©grĂ©s en dispositifs et en Ă©valuant leur empreinte environnementale. Ces 3 articles concernent donc les points (ii) et (iii) dĂ©crits prĂ©cĂ©demment.Dans le chapitre IV, nous avons explorĂ© un systĂšme biohybride en prĂ©parant et en caractĂ©risant des hydrogĂ©nases Ă  fer semi-synthĂ©tiques. L'analyse dĂ©taillĂ©e fournit des informations prĂ©cieuses pour la conception de catalyseurs bioinspirĂ©s pour la conversion H+/H2. Par exemple, le remplacement d'un ligand cyanure par un ligand CO dans le site actif difer a donnĂ© lieu Ă  une hydrogĂ©nase semi-synthĂ©tique prĂ©sentant des propriĂ©tĂ©s trĂšs diffĂ©rentes (activitĂ©, sensibilitĂ© aux inhibiteurs, etc.) selon la matrice protĂ©ique hĂŽte.Les connaissances acquises tout au long de ce travail de thĂšse nous incitent Ă  poursuivre cette dĂ©marche de bio-inspiration dans la recherche d'un catalyseur idĂ©al. L'approche basĂ©e sur l’élaboration de mĂ©tallo-polymĂšres est prometteuse mais la conception de sites catalytiques actifs et robustes est cruciale. Enfin, l'Ă©valuation de l'empreinte environnementale du produit est essentielle dans une perspective de durabilitĂ©

    Nouveaux matériaux d'électrode bioinspirés et biohybrides pour la production de l'hydrogÚne

    No full text
    Hydrogenase enzymes were first discovered in the 1930s. The first report of {Fe2(ÎŒ-S2)(CO)6} based catalyst was reported in 1928 without any information of [FeFe] hydrogenases. The first crystal structure of [FeFe] hydrogenases was reported in 1990s, which triggered the development of bioinspired catalysis based on the {Fe2(ÎŒ-S2)(CO)6} core due to its structural similarities with the [2Fe]H cofactor.19,91 Yet, it remains a highly active research field with continued efforts to find the optimum balance between activity, durability, sustainability and cost of the catalysts. This always motivates me to look for a better catalytic system, and also resulted in this thesis. In the eSCALED project, our objective was to develop a noble metal free bioinspired device for H2 production or CO2 reduction using solar electrolysis. I was responsible for developing cathode materials for H2 production. Considering that objective and my personal motivation, my overall doctoral journey is summarised in the following manner.In Paper I, we aimed straight towards an immobilisation strategy for a bioinspired {Fe2(ÎŒ-S2)(CO)6} based active sites, as this constitutes a key step for molecular based electrode materials for device applications. The anchoring method we settled for was π-π interactions, utilizing pyrene. We showed an improvement in loading capacity on the electrode as compared to previous reports, and an appreciable electronic communication between electrodes and catalysts. Finally, and importantly, the anchoring group appeared highly stable during catalysis. Still, the activity remained substandard under aqueous condition due to poor interaction with substrate (H+ from buffer) and degradation of the catalyst/active site under catalytic conditions.In Paper II, we aimed at encapsulating the [FeFe] site inside a water-soluble polymeric scaffold, to provide a basic outer coordination sphere along with an anchoring group in a single platform. The strategy met our expectations with regards to improved activity, but decreased the loading of active sites 4-5-fold, compared to the diiron complex deprived of polymer scaffold described in Paper I. Unfortunately, the polymeric scaffold could not protect the active site from degradation. In addition, we performed a life cycle assessment study to further highlight the importance of the metallopolymer strategy from a sustainability perspective.In Paper III, we redesigned our metallopolymer by replacing the active site with what was expected to be a more robust diiron active site. In parallel, the new design could allow to tune and increase the fraction of active sites in the polymer chain. However, we found that the active site still remains the weak link in this assembly. Hence further improvement is still required.On a more positive note, it is noteworthy to mention that we demonstrated through Papers II and III, that the metallopolymer approach is a highly promising for their employment in an energy conversion context. Clearly this could be extended to various energy conversion applications in future.Finally, in Paper IV, we explored a biohybrid system by preparing and characterising semisynthetic hydrogenases. The detailed analysis provides some valuable insight towards the design of bioinspired catalysts for H+/H2 conversion. For example, replacing one CN ligand with a CO ligand in [2Fe]H resulted in a semisynthetic hydrogenase with very different properties i.e. activity, sensitivity towards inhibitors etc., depending on the host protein scaffold.In closing, I think the insights that we learned throughout this thesis work motivates taking inspiration from Nature in the continued search for an ideal catalyst. The metallopolymer approach is promising. Here, the design of active and robust catalytic sites is crucial. Finally, evaluating environmental footprint of the product is essential from a sustainability perspective.Le changement climatique et la crise Ă©nergĂ©tique qui rĂ©sulte de l’abandon progressif des ressources fossiles constituent de vrais dĂ©fis pour l’humanitĂ©.Dans ce contexte, l’utilisation de l’hydrogĂšne molĂ©culaire (H2) pourrait ĂȘtre une alternative potentielle aux combustibles fossiles pour dĂ©ployer un systĂšme Ă©nergĂ©tique sans Ă©mission nette. L’hydrogĂšne permet en effet de stocker lors de sa production par Ă©lectrolyse Ă  partir d’eau une grande quantitĂ© d'Ă©nergie dans sa liaison chimique. Plus important encore, l'utilisation de l’hydrogĂšne dans une pile Ă  combustible pour produire de l'Ă©lectricitĂ© co-gĂ©nĂšre de la chaleur et ne produit que de l'eau comme sous-produit. Par consĂ©quent, la production d’hydrogĂšne en utilisant une source d’énergie renouvelable est une technologie trĂšs prometteuse et les rapports prospectifs rĂ©cent prĂ©disent un dĂ©ploiement massif de ces technologies de production d’«hydrogĂšne vert ».L’électrolyse de l’eau consiste Ă  utiliser de l'Ă©lectricitĂ© pour dĂ©composer l’eau en oxygĂšne (O2) et hydrogĂšne(H2). La nature multi-Ă©lectronique de cette rĂ©action entraĂźne une cinĂ©tique lente et des catalyseurs sont nĂ©cessaires pour pouvoir la rĂ©aliser avec un bon rendement Ă©nergĂ©tique et une forte puissance. Ces catalyseurs doivent ĂȘtre bon marchĂ©, actifs, stables et prĂ©senter un faible impact environemental.Les enzymes hydrogĂ©nases sont des catalyseurs naturels qui rĂ©alisent la production d’hydrogĂšne Ă  partir d'eau avec un excellent rendement Ă  des potentiels proches des valeurs thermodynamiques en utilisant des mĂ©taux de transition 3d abondants. Ces enzymes sont donc de bons cndidats pour des applications de production biotechnologiques de production d’hydrogĂšne vert. En parallĂšle, les sites actifs de ces enzymes sont une source d’inspiration pour le dĂ©veloppement de catalyseurs synthĂ©tiques pour les mĂȘmes applications. Aujourd’hui, ces recherches se structurent autour de trois approches complĂ©mentaires :(i) mieux comprendre le fonctionnement des hydrogĂ©nases et dĂ©velopper leurs applications.(ii) utiliser cette connaissance pour dĂ©velopper des catalyseurs bio-inspirĂ©s plus performants et les faire fonctionner dans des dispositifs expĂ©rimentaux de production de H2 par Ă©lectrolyse de l'eau.(iii) Évaluer l'empreinte environnementale des catalyseurs dĂ©veloppĂ©s.Ma thĂšse visait Ă  contribuer aux trois points susmentionnĂ©s comme suit :Dans les articles I, II et III, nous nous sommes concentrĂ©s sur le dĂ©veloppement de catalyseurs bio-inspirĂ©s Ă  base de matrices polymĂšres et en les optimisant pour fabriquer des matĂ©riaux d'Ă©lectrode pouvant ĂȘtre intĂ©grĂ©s en dispositifs et en Ă©valuant leur empreinte environnementale. Ces 3 articles concernent donc les points (ii) et (iii) dĂ©crits prĂ©cĂ©demment.Dans le chapitre IV, nous avons explorĂ© un systĂšme biohybride en prĂ©parant et en caractĂ©risant des hydrogĂ©nases Ă  fer semi-synthĂ©tiques. L'analyse dĂ©taillĂ©e fournit des informations prĂ©cieuses pour la conception de catalyseurs bioinspirĂ©s pour la conversion H+/H2. Par exemple, le remplacement d'un ligand cyanure par un ligand CO dans le site actif difer a donnĂ© lieu Ă  une hydrogĂ©nase semi-synthĂ©tique prĂ©sentant des propriĂ©tĂ©s trĂšs diffĂ©rentes (activitĂ©, sensibilitĂ© aux inhibiteurs, etc.) selon la matrice protĂ©ique hĂŽte.Les connaissances acquises tout au long de ce travail de thĂšse nous incitent Ă  poursuivre cette dĂ©marche de bio-inspiration dans la recherche d'un catalyseur idĂ©al. L'approche basĂ©e sur l’élaboration de mĂ©tallo-polymĂšres est prometteuse mais la conception de sites catalytiques actifs et robustes est cruciale. Enfin, l'Ă©valuation de l'empreinte environnementale du produit est essentielle dans une perspective de durabilitĂ©

    Nouveaux matériaux d'électrode bioinspirés et biohybrides pour la production de l'hydrogÚne

    No full text
    Hydrogenase enzymes were first discovered in the 1930s. The first report of {Fe2(ÎŒ-S2)(CO)6} based catalyst was reported in 1928 without any information of [FeFe] hydrogenases. The first crystal structure of [FeFe] hydrogenases was reported in 1990s, which triggered the development of bioinspired catalysis based on the {Fe2(ÎŒ-S2)(CO)6} core due to its structural similarities with the [2Fe]H cofactor.19,91 Yet, it remains a highly active research field with continued efforts to find the optimum balance between activity, durability, sustainability and cost of the catalysts. This always motivates me to look for a better catalytic system, and also resulted in this thesis. In the eSCALED project, our objective was to develop a noble metal free bioinspired device for H2 production or CO2 reduction using solar electrolysis. I was responsible for developing cathode materials for H2 production. Considering that objective and my personal motivation, my overall doctoral journey is summarised in the following manner.In Paper I, we aimed straight towards an immobilisation strategy for a bioinspired {Fe2(ÎŒ-S2)(CO)6} based active sites, as this constitutes a key step for molecular based electrode materials for device applications. The anchoring method we settled for was π-π interactions, utilizing pyrene. We showed an improvement in loading capacity on the electrode as compared to previous reports, and an appreciable electronic communication between electrodes and catalysts. Finally, and importantly, the anchoring group appeared highly stable during catalysis. Still, the activity remained substandard under aqueous condition due to poor interaction with substrate (H+ from buffer) and degradation of the catalyst/active site under catalytic conditions.In Paper II, we aimed at encapsulating the [FeFe] site inside a water-soluble polymeric scaffold, to provide a basic outer coordination sphere along with an anchoring group in a single platform. The strategy met our expectations with regards to improved activity, but decreased the loading of active sites 4-5-fold, compared to the diiron complex deprived of polymer scaffold described in Paper I. Unfortunately, the polymeric scaffold could not protect the active site from degradation. In addition, we performed a life cycle assessment study to further highlight the importance of the metallopolymer strategy from a sustainability perspective.In Paper III, we redesigned our metallopolymer by replacing the active site with what was expected to be a more robust diiron active site. In parallel, the new design could allow to tune and increase the fraction of active sites in the polymer chain. However, we found that the active site still remains the weak link in this assembly. Hence further improvement is still required.On a more positive note, it is noteworthy to mention that we demonstrated through Papers II and III, that the metallopolymer approach is a highly promising for their employment in an energy conversion context. Clearly this could be extended to various energy conversion applications in future.Finally, in Paper IV, we explored a biohybrid system by preparing and characterising semisynthetic hydrogenases. The detailed analysis provides some valuable insight towards the design of bioinspired catalysts for H+/H2 conversion. For example, replacing one CN ligand with a CO ligand in [2Fe]H resulted in a semisynthetic hydrogenase with very different properties i.e. activity, sensitivity towards inhibitors etc., depending on the host protein scaffold.In closing, I think the insights that we learned throughout this thesis work motivates taking inspiration from Nature in the continued search for an ideal catalyst. The metallopolymer approach is promising. Here, the design of active and robust catalytic sites is crucial. Finally, evaluating environmental footprint of the product is essential from a sustainability perspective.Le changement climatique et la crise Ă©nergĂ©tique qui rĂ©sulte de l’abandon progressif des ressources fossiles constituent de vrais dĂ©fis pour l’humanitĂ©.Dans ce contexte, l’utilisation de l’hydrogĂšne molĂ©culaire (H2) pourrait ĂȘtre une alternative potentielle aux combustibles fossiles pour dĂ©ployer un systĂšme Ă©nergĂ©tique sans Ă©mission nette. L’hydrogĂšne permet en effet de stocker lors de sa production par Ă©lectrolyse Ă  partir d’eau une grande quantitĂ© d'Ă©nergie dans sa liaison chimique. Plus important encore, l'utilisation de l’hydrogĂšne dans une pile Ă  combustible pour produire de l'Ă©lectricitĂ© co-gĂ©nĂšre de la chaleur et ne produit que de l'eau comme sous-produit. Par consĂ©quent, la production d’hydrogĂšne en utilisant une source d’énergie renouvelable est une technologie trĂšs prometteuse et les rapports prospectifs rĂ©cent prĂ©disent un dĂ©ploiement massif de ces technologies de production d’«hydrogĂšne vert ».L’électrolyse de l’eau consiste Ă  utiliser de l'Ă©lectricitĂ© pour dĂ©composer l’eau en oxygĂšne (O2) et hydrogĂšne(H2). La nature multi-Ă©lectronique de cette rĂ©action entraĂźne une cinĂ©tique lente et des catalyseurs sont nĂ©cessaires pour pouvoir la rĂ©aliser avec un bon rendement Ă©nergĂ©tique et une forte puissance. Ces catalyseurs doivent ĂȘtre bon marchĂ©, actifs, stables et prĂ©senter un faible impact environemental.Les enzymes hydrogĂ©nases sont des catalyseurs naturels qui rĂ©alisent la production d’hydrogĂšne Ă  partir d'eau avec un excellent rendement Ă  des potentiels proches des valeurs thermodynamiques en utilisant des mĂ©taux de transition 3d abondants. Ces enzymes sont donc de bons cndidats pour des applications de production biotechnologiques de production d’hydrogĂšne vert. En parallĂšle, les sites actifs de ces enzymes sont une source d’inspiration pour le dĂ©veloppement de catalyseurs synthĂ©tiques pour les mĂȘmes applications. Aujourd’hui, ces recherches se structurent autour de trois approches complĂ©mentaires :(i) mieux comprendre le fonctionnement des hydrogĂ©nases et dĂ©velopper leurs applications.(ii) utiliser cette connaissance pour dĂ©velopper des catalyseurs bio-inspirĂ©s plus performants et les faire fonctionner dans des dispositifs expĂ©rimentaux de production de H2 par Ă©lectrolyse de l'eau.(iii) Évaluer l'empreinte environnementale des catalyseurs dĂ©veloppĂ©s.Ma thĂšse visait Ă  contribuer aux trois points susmentionnĂ©s comme suit :Dans les articles I, II et III, nous nous sommes concentrĂ©s sur le dĂ©veloppement de catalyseurs bio-inspirĂ©s Ă  base de matrices polymĂšres et en les optimisant pour fabriquer des matĂ©riaux d'Ă©lectrode pouvant ĂȘtre intĂ©grĂ©s en dispositifs et en Ă©valuant leur empreinte environnementale. Ces 3 articles concernent donc les points (ii) et (iii) dĂ©crits prĂ©cĂ©demment.Dans le chapitre IV, nous avons explorĂ© un systĂšme biohybride en prĂ©parant et en caractĂ©risant des hydrogĂ©nases Ă  fer semi-synthĂ©tiques. L'analyse dĂ©taillĂ©e fournit des informations prĂ©cieuses pour la conception de catalyseurs bioinspirĂ©s pour la conversion H+/H2. Par exemple, le remplacement d'un ligand cyanure par un ligand CO dans le site actif difer a donnĂ© lieu Ă  une hydrogĂ©nase semi-synthĂ©tique prĂ©sentant des propriĂ©tĂ©s trĂšs diffĂ©rentes (activitĂ©, sensibilitĂ© aux inhibiteurs, etc.) selon la matrice protĂ©ique hĂŽte.Les connaissances acquises tout au long de ce travail de thĂšse nous incitent Ă  poursuivre cette dĂ©marche de bio-inspiration dans la recherche d'un catalyseur idĂ©al. L'approche basĂ©e sur l’élaboration de mĂ©tallo-polymĂšres est prometteuse mais la conception de sites catalytiques actifs et robustes est cruciale. Enfin, l'Ă©valuation de l'empreinte environnementale du produit est essentielle dans une perspective de durabilitĂ©

    Novel bioinspired and biohybrid electrode materials for hydrogen production

    No full text
    This thesis was accomplished under the scope of eSCALED project administrated by EU MSCA horizon 2020 program, which aimed to develop a device called “artificial leaf” responsible for generating fuels or liquid chemicals (H2 production or CO2 reduction) using solar electrolysis. My objective was to develop a noble metal free, efficient cathode materials for H2 production for the device which yield this thesis. For developing catalysts, we took inspiration from [FeFe] hydrogenase enzymes on merit of their impressive H+/H2 conversion activity (TOF ~10,000 s-1) with negligible overpotential requirements at neutral pH using earth abundant metals. Subsequently, we choose {Fe2(ÎŒ-S2)(CO)6} based active site core and designed it as per requirements.  Firstly, our aim was to develop a robust anchoring strategy to immobilize the {Fe2(ÎŒ-S2)(CO)6}based catalyst on electrode. We designed the diiron site with an anchoring group i.e. pyrene to graft it on multiwalled carbon nanotubes (MWNT) using π-π interaction. The resulting catalyst showed moderate electrochemical H2 production activity at neutral pH while immobilized on electrode. Post operando assessment revealed the degradation of active sites while anchoring group remained intact throughout the catalysis. Secondly, to improve the catalysis further, the active site was encapsulated inside a designed water-soluble polymeric scaffold comprising pyrene as an anchoring group. The resulting metallopolymers functionalized MWNT showed about two-fold increase in electrochemical H2 production activity with relatively low overpotential requirements than isolated complex discussed earlier. However, the catalysis was limited by degradation of the active site. In addition, life cycle assessments (LCA) were performed to evaluate the environmental footprint for H2 production by metallopolymers. Thirdly, we aimed to replace the active site inside metallopolymers with a relatively robust diiron site which resulted in a marginal improvement of durability with an expense of about three times lower activity than previous metallopolymers.  Finally, we aimed to study semi-artificial hydrogenases by replacing the native cofactor of the [FeFe] hydrogenase with a synthetic cofactor. Combination of spectroscopy, electrochemistry and site-directed mutagenesis revealed some key insights on structural orientation of active site, activity, sensitivity towards inhibitors like CO, O2 etc., due to changes in structural and electronic properties of the active site

    Designing hydrogen production catalyst containing enzyme inspired outer coordination sphere features

    No full text
    by Shikha Khandelwal, Afridi Zamader and Arnab Dutt
    corecore