32 research outputs found

    The effect of a raw vs dry diet on serum biochemical, hematologic, blood iron, B12, and folate levels in Staffordshire Bull Terriers

    Get PDF
    Background To date, very few studies have compared the effects of different types of feeding practices on canine physiology, such as feeding exclusively dry, raw, or homemade foods. Objectives We aimed to report the changes in hematologic, serum biochemical, plasma folate, B-12, and whole blood iron levels in dogs fed two different diets. Methods A pilot study was developed to compare the effects of a heat-processed high carbohydrate (HPHC) and nonprocessed high-fat (NPHF) diet. A total of 33 client-owned Staffordshire Bull Terriers were used; 18 had canine atopic dermatitis, seven were healthy, and eight were grouped as "borderline" dogs since they did not fulfill at least six of Favrot's criteria. The comparisons were made between the diet groups at the end visit of the diet intervention, as well as within the diet groups during the study. Results Significant differences between and within the diet groups were observed, although the majority of outcomes remained within the RIs. The median time of diet intervention was 140 days. Red blood cell counts, mean cell hemoglobin concentrations, and platelet counts were significantly higher, and mean cell hemoglobin, mean cell volume, alkaline phosphatase, inorganic phosphorus, and cholesterol were significantly lower in the dogs fed the NPHF diet compared with those fed the HPHC diet after the diet trial was completed. In addition, folate, B-12, and iron decreased significantly in the NPHF diet group. Conclusions This pilot study indicated that diet had an impact on blood values, although most remained within RIs, pointing out the need for further studies.Peer reviewe

    SESAR Joint Undertaking report 2010

    Get PDF
    Abstract Salmonellosis is a gastrointestinal disease caused by non-typhoidal Salmonella serovars such as Salmonella Typhimurium. This pathology is a zoonosis, and food animals with subclinical infection constitute a vast reservoir for disease. After intestinal colonization, Salmonella Typhimurium reaches mesenteric lymph nodes (MLN), where infection is controlled avoiding systemic spread. Although the molecular basis of this infection has been extensively studied, little is known about how microRNA (miRNA) regulate the expression of proteins involved in the Salmonella-host interaction. Using small RNA-seq, we examined expression profiles of MLN 2 days after infection with Salmonella Typhimurium, and we found 110 dysregulated miRNA. Among them, we found upregulated miR-21, miR-155, miR-150, and miR-221, as well as downregulated miR-143 and miR-125, all of them previously linked to other bacterial infections. Integration with proteomic data revealed 30 miRNA potentially regulating the expression of 15 proteins involved in biological functions such as cell death and survival, inflammatory response and antigenic presentation. The inflammatory response was found increased via upregulation of miRNA such as miR-21 and miR-155. Downregulation of miR-125a/b, miR-148 and miR-1 were identified as potential regulators of MHC-class I components PSMB8, HSP90B1 and PDIA3, respectively. Furthermore, we confirmed that miR-125a is a direct target of immunoproteasome component PSMB8. Since we also found miR-130 downregulation, which is associated with upregulation of HSPA8, we suggest induction of both MHC-I and MHC-II antigen presentation pathways. In conclusion, our study identifies miRNA that could regulate critical networks for antigenic presentation, inflammatory response and cytoskeletal rearrangements

    Regulatory role of microRNA in mesenteric lymph nodes after Salmonella Typhimurium infection

    Get PDF
    © The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.[EN] Salmonellosis is a gastrointestinal disease caused by non-typhoidal Salmonella serovars such as Salmonella Typhimurium. This pathology is a zoonosis, and food animals with subclinical infection constitute a vast reservoir for disease. After intestinal colonization, Salmonella Typhimurium reaches mesenteric lymph nodes (MLN), where infection is controlled avoiding systemic spread. Although the molecular basis of this infection has been extensively studied, little is known about how microRNA (miRNA) regulate the expression of proteins involved in the Salmonella-host interaction. Using small RNA-seq, we examined expression profiles of MLN 2 days after infection with Salmonella Typhimurium, and we found 110 dysregulated miRNA. Among them, we found upregulated miR-21, miR-155, miR-150, and miR-221, as well as downregulated miR-143 and miR-125, all of them previously linked to other bacterial infections. Integration with proteomic data revealed 30 miRNA potentially regulating the expression of 15 proteins involved in biological functions such as cell death and survival, inflammatory response and antigenic presentation. The inflammatory response was found increased via upregulation of miRNA such as miR-21 and miR-155. Downregulation of miR-125a/b, miR-148 and miR-1 were identified as potential regulators of MHC-class I components PSMB8, HSP90B1 and PDIA3, respectively. Furthermore, we confirmed that miR-125a is a direct target of immunoproteasome component PSMB8. Since we also found miR-130 downregulation, which is associated with upregulation of HSPA8, we suggest induction of both MHC-I and MHC-II antigen presentation pathways. In conclusion, our study identifies miRNA that could regulate critical networks for antigenic presentation, inflammatory response and cytoskeletal rearrangements.SIThis work was supported by the Spanish Ministry of Economy and Competitiveness (AGL2011-28904 and AGL2014-54089). JHU is a predoctoral researcher supported by the FPI Research Program of the Spanish Ministry of Economy and Competitiveness (BES-2012-058642). SZL is a postdoctoral researcher supported by the Postdoctoral Trainee Program of the Spanish Ministry of Economy and Competitiveness (FPDI-2013-15619), and a postdoctoral contract co-funded by the XXI University of Cordoba Intramural research Program and the European Regional Development Funds (FEDER).We thank Reyes Alvarez for their technical assistance, and the Functional Genomics Core of the Institute for Research in Biomedicine (IRB) Barcelona for performing the library preparation and small RNA sequencin

    Transcriptional analysis of porcine intestinal mucosa infected with Salmonella Typhimurium revealed a massive inflammatory response and disruption of bile acid absorption in ileum

    Get PDF
    Infected pork meat is an important source of non-typhoidal human salmonellosis. Understanding of molecular mechanisms involved in disease pathogenesis is important for the development of therapeutic and preventive strategies. Thus, hereby we study the transcriptional profiles along the porcine intestine during infection with Salmonella Typhimurium, as well as post-transcriptional gene modulation by microRNAs (miRNA). Sixteen piglets were orally challenged with S. Typhimurium. Samples from jejunum, ileum and colon, collected 1, 2 and 6 days post infection (dpi) were hybridized to mRNA and miRNA expression microarrays and analyzed. Jejunum showed a reduced transcriptional response indicating mild inflammation only at 2 dpi. In ileum inflammatory genes were overexpressed (e.g., IL-1B, IL-6, IL-8, IL1RAP, TNFα), indicating a strong immune response at all times of infection. Infection also down-regulated genes of the FXR pathway (e.g., NR1H4, FABP6, APOA1, SLC10A2), indicating disruption of the bile acid absorption in ileum. This result was confirmed by decreased high-density lipoprotein cholesterol in serum of infected pigs. Ileal inflammatory gene expression changes peaked at 2 dpi and tended to resolve at 6 dpi. Furthermore, miRNA analysis of ileum at 2 dpi revealed 62 miRNAs potentially regulating target genes involved in this inflammatory process (e.g., miR-374 and miR-451). In colon, genes involved in epithelial adherence, proliferation and cellular reorganization were down-regulated at 2 and 6 dpi. In summary, here we show the transcriptional changes occurring at the intestine at different time points of the infection, which are mainly related to inflammation and disruption of the bile acid metabolism. © 2016 Uribe et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated

    Comparative Proteomics Reveals Differences in Host-Pathogen Interaction between Infectious and Commensal Relationship with Campylobacter jejuni

    Get PDF
    Copyright © 2017 Ayllón, Jiménez-Marín, Argüello, Zaldívar-López, Villar, Aguilar, Moreno, De La Fuente and Garrido. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.[EN] Campylobacter jejuni is the leading food-borne poisoning in industrialized countries. While the bacteria causes disease in humans, it merely colonizes the gut in poultry or pigs, where seems to establish a commensal relationship. Until now, few studies have been conducted to elucidate the relationship between C. jejuni and its different hosts. In this work, a comparative proteomics approach was used to identify the underlying mechanisms involved in the divergent outcome following C. jejuni infection in human and porcine host. Human (INT-407) and porcine (IPEC-1) intestinal cell lines were infected by C. jejuni for 3 h (T3h) and 24 h (T24h). C. jejuni infection prompted an intense inflammatory response at T3h in human intestinal cells, mainly characterized by expression of proteins involved in cell spreading, cell migration and promotion of reactive oxygen species (ROS). Proteomic analysis evidenced significantly regulated biofunctions in human cells related with engulfment and endocytosis, and supported by canonical pathways associated to infection such as caveolar- and clathrin-mediated endocytosis signaling. In porcine IPEC-1 cells, inflammatory response as well as signaling pathways that control cellular functions such as cell migration, endocytosis and cell cycle progression resulted downregulated. These differences in the host response to infection were supported by the different pattern of adhesion and invasion proteins expressed by C. jejuni in human and porcine cells. No marked differences in expression of virulence factors involved in adaptive response and iron acquisition functions were observed. Therefore, the results of this study suggest that both host and pathogen factors are responsible for commensal or infectious character of C. jejuni in different hosts.SIThis work was supported by the Spanish Ministry of Economy and Competitiveness (AGL2014-54089-R). SZ is a postdoctoral researcher supported by the Postdoctoral Trainee Program of the Spanish Ministry of Economy and Competitiveness (FPDI2013-15619). HA is a postdoctoral researcher supported by the Juan de la Cierva Postdoctoral Trainee Program of the Spanish Ministry of Economy and Competitiveness (FJCI-2014-22877). MV was supported by the Research Plan of the University of the Castilla-La Mancha, SpainWe thank the Andalusian Platform of Bioinformatics (PAB) from the University of Malaga for granting the right to use IPA bioinformatic tools

    Transcriptional analysis of porcine intestinal mucosa infected with Salmonella Typhimurium revealed a massive inflammatory response and disruption of bile acid absorption in ileum

    Get PDF
    © 2016 Uribe et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.[EN]Infected pork meat is an important source of non-typhoidal human salmonellosis. Understanding of molecular mechanisms involved in disease pathogenesis is important for the development of therapeutic and preventive strategies. Thus, hereby we study the transcriptional profiles along the porcine intestine during infection with Salmonella Typhimurium, as well as post-transcriptional gene modulation by microRNAs (miRNA). Sixteen piglets were orally challenged with S. Typhimurium. Samples from jejunum, ileum and colon, collected 1, 2 and 6 days post infection (dpi) were hybridized to mRNA and miRNA expression microarrays and analyzed. Jejunum showed a reduced transcriptional response indicating mild inflammation only at 2 dpi. In ileum inflammatory genes were overexpressed (e.g., IL-1B, IL-6, IL-8, IL1RAP, TNFα), indicating a strong immune response at all times of infection. Infection also down-regulated genes of the FXR pathway (e.g., NR1H4, FABP6, APOA1, SLC10A2), indicating disruption of the bile acid absorption in ileum. This result was confirmed by decreased high-density lipoprotein cholesterol in serum of infected pigs. Ileal inflammatory gene expression changes peaked at 2 dpi and tended to resolve at 6 dpi. Furthermore, miRNA analysis of ileum at 2 dpi revealed 62 miRNAs potentially regulating target genes involved in this inflammatory process (e.g., miR-374 and miR-451). In colon, genes involved in epithelial adherence, proliferation and cellular reorganization were down-regulated at 2 and 6 dpi. In summary, here we show the transcriptional changes occurring at the intestine at different time points of the infection, which are mainly related to inflammation and disruption of the bile acid metabolism.SIWe thank Erena Ruiz Mora, Juana Molina and Reyes Alvarez for their technical assistance, and Eloisa Andújar and Mónica Pérez from the Genomic Unit of CABIMER for their excellent array technical assistance. This work was supported by the Spanish Ministry of Economy and Competitiveness (AGL2011-28904 and AGL2014-54089-R). JHU is a predoctoral researcher supported by the FPI Research Program of the Spanish Ministry of Economy and Competitiveness (BES-2012-058642). SZL is a postdoctoral researcher supported by the Postdoctoral Trainee Program of the Spanish Ministry of Economy and Competitiveness (FPDI-2013-15619)

    Early Salmonella Typhimurium infection in pigs disrupts Microbiome composition and functionality principally at the ileum mucosa

    Get PDF
    peer-reviewedSalmonella is a major foodborne pathogen which successfully infects animal species for human consumption such as swine. The pathogen has a battery of virulence factors which it uses to colonise and persist within the host. The host microbiota may play a role in resistance to, and may also be indirectly responsible from some of the consequences of, Salmonella infection. To investigate this, we used 16S rRNA metagenomic sequencing to determine the changes in the gut microbiota of pigs in response to infection by Salmonella Typhimurium at three locations: ileum mucosa, ileum content and faeces. Early infection (2 days post-infection) impacted on the microbiome diversity at the mucosa, reflected in a decrease in representatives of the generally regarded as desirable genera (i.e., Bifidobacterium and Lactobacillus). Severe damage in the epithelium of the ileum mucosa correlated with an increase in synergistic (with respect to Salmonella infection; Akkermansia) or opportunistically pathogenic bacteria (Citrobacter) and a depletion in anaerobic bacteria (Clostridium spp., Ruminococcus, or Dialliser). Predictive functional analysis, together with metabolomic analysis revealed changes in glucose and lipid metabolism in infected pigs. The observed changes in commensal healthy microbiota, including the growth of synergistic or potentially pathogenic bacteria and depletion of beneficial or competing bacteria, could contribute to the pathogen’s ability to colonize the gut successfully. The findings from this study could be used to form the basis for further research aimed at creating intervention strategies to mitigate the effects of Salmonella infection

    Early Salmonella Typhimurium infection in pigs disrupts Microbiome composition and functionality principally at the ileum mucosa

    Get PDF
    [EN] Salmonella is a major foodborne pathogen which successfully infects animal species for human consumption such as swine. The pathogen has a battery of virulence factors which it uses to colonise and persist within the host. The host microbiota may play a role in resistance to, and may also be indirectly responsible from some of the consequences of, Salmonella infection. To investigate this, we used 16S rRNA metagenomic sequencing to determine the changes in the gut microbiota of pigs in response to infection by Salmonella Typhimurium at three locations: ileum mucosa, ileum content and faeces. Early infection (2 days post-infection) impacted on the microbiome diversity at the mucosa, reflected in a decrease in representatives of the generally regarded as desirable genera (i.e., Bifidobacterium and Lactobacillus). Severe damage in the epithelium of the ileum mucosa correlated with an increase in synergistic (with respect to Salmonella infection; Akkermansia) or opportunistically pathogenic bacteria (Citrobacter) and a depletion in anaerobic bacteria (Clostridium spp., Ruminococcus, or Dialliser). Predictive functional analysis, together with metabolomic analysis revealed changes in glucose and lipid metabolism in infected pigs. The observed changes in commensal healthy microbiota, including the growth of synergistic or potentially pathogenic bacteria and depletion of beneficial or competing bacteria, could contribute to the pathogen's ability to colonize the gut successfully. The findings from this study could be used to form the basis for further research aimed at creating intervention strategies to mitigate the effects of Salmonella infectionSIWe want to acknowledge the staff from the Genomics and Animal breeding group at the University of Córdoba for their technical support to carry out this study. This article is based upon work from COST Action FA1401 (PiGutNet), supported by COST (European Cooperation in Science and Technology. This work was supported by the Spanish Ministry of Economy and Competitiveness (AGL2014-54089-R/AGL2017-87415-R). HA was funded by the PiGutNet COST action (FA1401) for a Short-Term Scientific Mission at INRA’s GABI laboratory (Jouy-en- Josas, France). SZL is a postdoctoral researcher supported by the Postdoctoral Trainee Program of the Spanish Ministry of Economy and Competitiveness (FPDI-2013-15619). HA is a postdoctoral researcher supported by the Juan de la Cierva Postdoctoral Trainee Program of the Spanish Ministry of Economy and Competitiveness (FJCI-2014-22877
    corecore