33 research outputs found

    Circular economy: A sustainable management strategy for rare earth elements consumption in Australia

    Get PDF
    Copyright © 2022 The Authors. Rare earth elements (REEs) are a major constituent of many advanced materials in the information and telecommunication industries, as well as the renewable and energy efficiency sectors. REEs are enablers of speed, performance, durability, and low carbon emissions in these industries. They are required in everyday applications because of their unique chemical and physical properties. Given the rise in environmental concerns and consequent demand for REEs and the limited locations where REEs can be sourced, there is a very high risk of supply disruption. Despite the threat of REE supply risk and its environmental and economic significance, an in-depth examination of the environmental impact and benefits of sustainable consumption of these metals in Australia, as in many other parts of the world, holistically and systematically is lacking, particularly regarding improvement in resource efficiency strategies. Most previous work on REEs has focused either on the politico-economic conflicts over supply and distribution, or the environmental and social impacts of its production and has not holistically examined this problem, as a system. This paper provides a review of REEs' sustainable consumption in Australia. The study highlights Circular Economy (CE) as a scientifically plausible picture of sustainable management strategy to help address the adverse impacts of resource (REEs) shortages while achieving maximum environmental benefits. It provides answers to how sustainable are the current strategies of REEs consumption and how this can be enhanced from a CE perspective. A comprehensive CE framework was developed, followed by an illustrative example of CE as a tool for sustainability management and a practical implementation strategy to close the material loop and improve resource efficiency.JCU Postgraduate Research Scholarship (JCUPRS)

    Reconstructing charge-carrier dynamics in porous silicon membranes from time-resolved interferometric measurements

    Get PDF
    We performed interferometric time-resolved simultaneous reflectance and transmittance measurements to investigate the carrier dynamics in pump-probe experiments on thin porous silicon membranes. The experimental data was analysed by using a method built on the Wentzel-Kramers-Brillouin approximation and the Drude model, allowing us to reconstruct the excited carriers’ non-uniform distribution in space and its evolution in time. The analysis revealed that the carrier dynamics in porous silicon, with ~50% porosity and native oxide chemistry, is governed by the Shockley-Read-Hall recombination process with a characteristic time constant of 375 picoseconds, whereas diffusion makes an insignificant contribution as it is suppressed by the high rate of scattering

    Micromechanical Properties of Injection-Molded Starch–Wood Particle Composites

    Get PDF
    The micromechanical properties of injection molded starch–wood particle composites were investigated as a function of particle content and humidity conditions. The composite materials were characterized by scanning electron microscopy and X-ray diffraction methods. The microhardness of the composites was shown to increase notably with the concentration of the wood particles. In addition,creep behavior under the indenter and temperature dependence were evaluated in terms of the independent contribution of the starch matrix and the wood microparticles to the hardness value. The influence of drying time on the density and weight uptake of the injection-molded composites was highlighted. The results revealed the role of the mechanism of water evaporation, showing that the dependence of water uptake and temperature was greater for the starch–wood composites than for the pure starch sample. Experiments performed during the drying process at 70°C indicated that the wood in the starch composites did not prevent water loss from the samples.Peer reviewe

    Digital health literacy and its association with anxiety among students in Pakistan

    No full text
    Zakar R, Zakar MZ, Dadaczynski K, Okan O. Digital health literacy and its association with anxiety among students in Pakistan. European Journal of Public Health. 2021;31(Suppl. 3):404.Background The public health importance of digital health literacy has significantly increased during COVID-19 pandemic all over the world. Health literacy enables individuals in informed and timely decision making. Anxiety particularly during difficult situations may hinders the decision making ability of individuals. The aim of this study was to assess the digital health literacy seeking and its association with anxiety level among university students during the wake of COVID-19 pandemic in Pakistan. Methods This study was conducted as a member of COVID digital Health literacy network between 49 countries through an online-based cross-sectional survey. Data were collected with 1747 students from randomly selected four public sector universities in Punjab province of Pakistan. Digital health literacy instrument was used to assess students' skills in digital health information seeking regarding COVID-19. Sense of coherence (SOC) was evaluated through 9-item scale and anxiety was assessed using 9-items Dark Future Scale. Simple bivariate and multivariate linear regression was performed to assess the association of key characteristics with DHL and anxiety level among students. Results The study found that about 54% of the students had high DHL and 51.9% had low or no anxiety. The results of multivariate analysis show that gender (p value=0.005), sense of coherence (p value<0.001) and importance of information (p value<0.001) were significantly associated with DHL. Additionally, Age (p < 0.001), subject group of study (p = 0.03), university of study (p < 0.000) and financial satisfaction (p < 0.001) were significantly associated with anxiety among students. However, there was no significant relationship of DHL, SOC, and wellbeing with anxiety. Conclusions Concerted and focused interventions are needed to address anxiety related issues among university students

    Restoration of marine ecosystems: understanding possible futures for optimal outcomes

    No full text
    Accelerating declines in the extent, quality and functioning of the world's marine ecosystems have generated an upsurge in focus on practical solutions, with ecosystem restoration becoming an increasingly attractive mitigation strategy for systems as diverse as coral reefs, mangroves and tidal flats. While restoration is popular because it promises positive outcomes and a return to something approaching unimpacted condition and functioning, it involves substantial public and private investment, both for the initial restoration activity and for on-going maintenance of the restored asset. This investment often affords one big chance to get things right before irretrievable damage is done. As a result, precise, well considered and accountable decision-making is needed to determine the specific focus for restoration, the scale of restoration, the location for deploying restoration activities, and indeed whether or not restoration is necessary or even possible. We explore the environmental/ecological considerations and constraints governing optimal decisions about the nature, location and prioritisation of restoration activities in marine ecosystems, and in particular the constraints on achieving understanding of possible futures and the likelihood of achieving them. We conclude that action must be informed by a context-specific understanding of the historical situation, the current situation, the constraints on change, the range of potential outcome scenarios, and the potential futures envisioned

    Molecular characterization of renin-angiotensin system components in human intrauterine tissues and fetal membranes from vaginal delivery and cesarean section

    No full text
    A prorenin-angiotensin system (RAS) could, via the (pro)renin receptor (ATP6AP2), have various effects in human intrauterine tissues, either directly by prorenin/ATP6AP2 cell signaling, or indirectly via angiotensin II and/or angiotensin 1-7. Here we describe RAS components in fetal membranes, decidua and placenta collected at elective cesarean section (non-laboring), after spontaneous delivery (after labor, n = 38), and in myometria (n = 16) from elective (non-laboring) or emergency cesarean (laboring) deliveries. Angiotensinogen (AGT), angiotensin-converting enzyme 1 and 2 (ACE; ACE2), angiotensin receptor 1 and 2 (AGTR1; AGTR2) and angiotensin 1-7 receptor (MAS1) mRNAs were measured by qRTPCR and proteins were localized by immunohistochemistry. In myometrium, prorenin (REN), ATP6AP2, and downstream signaling proteins zinc finger and BTB domain-containing protein 16 (ZBTB16), transforming growth factor-β1 (TGFβ1) and prostaglandin-endoperoxide synthase 2 (PTGS2) mRNAs were also measured. RAS mRNAs, except AGTR1 and AGTR2, were abundant in decidua and lowest in amnion compared to the other tissues. ACE, AGT and PTGS2 mRNAs were higher in laboring than non-laboring myometrium, suggesting that the myometrial RAS is involved in labor. Angiotensinogen and prorenin staining in amnion, chorion and decidua was pervasive despite their mRNAs being low in amnion and chorion. In placenta, prorenin, angiotensinogen and AGTR2 were present in syncytiotrophoblasts, ACE was in fetal endothelium, while ACE2 distribution was diffuse. AGTR1 and AGTR2 mRNAs and proteins were abundant. No differences were evident in the staining patterns with labor. These results are consistent with the hypothesis that fetal vascular ACE might contribute angiotensin II to the fetus, whilst syncytial ACE2 might hypothetically have a role in converting angiotensin II to angiotensin 1-7 in maternal blood

    A pre-specified analysis of the Dapagliflozin and Prevention of Adverse Outcomes in Chronic Kidney Disease (DAPA-CKD) randomized controlled trial on the incidence of abrupt declines in kidney function

    Get PDF
    This pre-specified analysis of DAPA-CKD assessed the impact of sodium-glucose cotransporter 2 inhibition on abrupt declines in kidney function in high-risk patients based on having chronic kidney disease (CKD) and substantial albuminuria. DAPA-CKD was a randomized, double-blind, placebo-controlled trial that had a median follow-up of 2.4 years. Adults with CKD (urinary albumin-to-creatinine ratio 200-5000 mg/g and estimated glomerular filtration rate 25-75 mL/min/1.73m2) were randomized to dapagliflozin 10 mg/day matched to placebo (2152 individuals each). An abrupt decline in kidney function was defined as a pre-specified endpoint of doubling of serum creatinine between two subsequent study visits. We also assessed a post-hoc analysis of investigator-reported acute kidney injury-related serious adverse events. Doubling of serum creatinine between two subsequent visits (median time-interval 100 days) occurred in 63 (2.9%) and 91 (4.2%) participants in the dapagliflozin and placebo groups, respectively (hazard ratio 0.68 [95% confidence interval 0.49, 0.94]). Accounting for the competing risk of mortality did not alter our findings. There was no heterogeneity in the effect of dapagliflozin on abrupt declines in kidney function based on baseline subgroups. Acute kidney injury-related serious adverse events were not significantly different and occurred in 52 (2.5%) and 69 (3.2%) participants in the dapagliflozin and placebo groups, respectively (0.77 [0.54, 1.10]). Thus, in patients with CKD and substantial albuminuria, dapagliflozin reduced the risk of abrupt declines in kidney function
    corecore