244 research outputs found

    Strain bursts in plastically deforming Molybdenum micro- and nanopillars

    Full text link
    Plastic deformation of micron and sub-micron scale specimens is characterized by intermittent sequences of large strain bursts (dislocation avalanches) which are separated by regions of near-elastic loading. In the present investigation we perform a statistical characterization of strain bursts observed in stress-controlled compressive deformation of monocrystalline Molybdenum micropillars. We characterize the bursts in terms of the associated elongation increments and peak deformation rates, and demonstrate that these quantities follow power-law distributions that do not depend on specimen orientation or stress rate. We also investigate the statistics of stress increments in between the bursts, which are found to be Weibull distributed and exhibit a characteristic size effect. We discuss our findings in view of observations of deformation bursts in other materials, such as face-centered cubic and hexagonal metals.Comment: 14 pages, 8 figures, submitted to Phil Ma

    Acceleration and localization of subcritical crack growth in a natural composite material

    Get PDF
    Catastrophic failure of natural and engineered materials is often preceded by an acceleration and localization of damage that can be observed indirectly from acoustic emissions (AE) generated by the nucleation and growth of microcracks. In this paper we present a detailed investigation of the statistical properties and spatiotemporal characteristics of AE signals generated during triaxial compression of a sandstone sample. We demonstrate that the AE event amplitudes and interevent times are characterized by scaling distributions with shapes that remain invariant during most of the loading sequence. Localization of the AE activity on an incipient fault plane is associated with growth in AE rate in the form of a time-reversed Omori law with an exponent near 1. The experimental findings are interpreted using a model that assumes scale-invariant growth of the dominating crack or fault zone, consistent with the Dugdale-Barenblatt “process zone” model. We determine formal relationships between fault size, fault growth rate, and AE event rate, which are found to be consistent with the experimental observations. From these relations, we conclude that relatively slow growth of a subcritical fault may be associated with a significantly more rapid increase of the AE rate and that monitoring AE rate may therefore provide more reliable predictors of incipient failure than direct monitoring of the growing fault

    1/f1/f noise and avalanche scaling in plastic deformation

    Get PDF
    We study the intermittency and noise of dislocation systems undergoing shear deformation. Simulations of a simple two-dimensional discrete dislocation dynamics model indicate that the deformation rate exhibits a power spectrum scaling of the type 1/fα1/f^{\alpha}. The noise exponent is far away from a Lorentzian, with α≈1.5\alpha \approx 1.5. This result is directly related to the way the durations of avalanches of plastic deformation activity scale with their size.Comment: 6 pages, 5 figures, submitted to Phys. Rev.

    Self-affine surface morphology of plastically deformed metals

    Full text link
    We analyze the surface morphology of metals after plastic deformation over a range of scales from 10 nm to 2 mm, using a combination of atomic force microscopy and scanning white-light interferometry. We demonstrate that an initially smooth surface during deformation develops self-affine roughness over almost four orders of magnitude in scale. The Hurst exponent HH of one-dimensional surface profiles is initially found to decrease with increasing strain and then stabilizes at H≈0.75H \approx 0.75. By analyzing their statistical properties we show that the one-dimensional surface profiles can be mathematically modelled as graphs of a fractional Brownian motion. Our findings can be understood in terms of a fractal distribution of plastic strain within the deformed samples

    Depinning transition of dislocation assemblies: pileup and low-angle grain boundary

    Get PDF
    We investigate the depinning transition occurring in dislocation assemblies. In particular, we consider the cases of regularly spaced pileups and low angle grain boundaries interacting with a disordered stress landscape provided by solute atoms, or by other immobile dislocations present in non-active slip systems. Using linear elasticity, we compute the stress originated by small deformations of these assemblies and the corresponding energy cost in two and three dimensions. Contrary to the case of isolated dislocation lines, which are usually approximated as elastic strings with an effective line tension, the deformations of a dislocation assembly cannot be described by local elastic interactions with a constant tension or stiffness. A nonlocal elastic kernel results as a consequence of long range interactions between dislocations. In light of this result, we revise statistical depinning theories and find novel results for Zener pinning in grain growth. Finally, we discuss the scaling properties of the dynamics of dislocation assemblies and compare theoretical results with numerical simulations.Comment: 13 pages, 8 figure
    • 

    corecore