6 research outputs found

    Who You Gonna Call?: Creating a Call List for Your Facility\u27s Disaster Plan

    Get PDF
    Preservation can involve responding to active and pressing matters. But not all buildings are lost to the bulldozer. Many are lost to natural and human disasters like storms and water. A Disaster Plan is a common document used by museums and history organizations. Learn how to develop a contact list for a Disaster Response Plan so you know whom to call when disaster strikes

    Molecular study of the perforin gene in familial hematological malignancies

    Get PDF
    Perforin gene (PRF1) mutations have been identified in some patients diagnosed with the familial form of hemophagocytic lymphohistiocytosis (HLH) and in patients with lymphoma. The aim of the present study was to determine whether patients with a familial aggregation of hematological malignancies harbor germline perforin gene mutations. For this purpose, 81 unrelated families from Tunisia and France with aggregated hematological malignancies were investigated. The variants detected in the PRF1 coding region amounted to 3.7% (3/81). Two of the three variants identified were previously described: the p.Ala91Val pathogenic mutation and the p.Asn252Ser polymorphism. A new p.Ala 211Val missense substitution was identified in two related Tunisian patients. In order to assess the pathogenicity of this new variation, bioinformatic tools were used to predict its effects on the perforin protein structure and at the mRNA level. The segregation of the mutant allele was studied in the family of interest and a control population was screened. The fact that this variant was not found to occur in 200 control chromosomes suggests that it may be pathogenic. However, overexpression of mutated PRF1 in rat basophilic leukemia cells did not affect the lytic function of perforin differently from the wild type protein

    Physiological and biochemical responses of Suaeda fruticosa to cadmium and copper stresses: growth, nutrient uptake, antioxidant enzymes, phytochelatin, and glutathione levels

    No full text
    Environmental pollution by trace metal elements (TMEs) is a serious problem worldwide, increasing in parallel with the development of human technology. The present research aimed to examine the response of halophytic species Suaeda fruticosa to oxidative stress posed by combined abiotic stresses. Plants have been grown for 1 month with an irrigation solution supplemented with 200 mM NaCl and 400 ÎĽM Cd2+ or 400 ÎĽM Cu2+. The level of glutathione (GSH), phytochelatins (PCs), and antioxidant enzyme activities [ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and catalase (CAT)] as well as lipid peroxidation was studied to see the stress exerted by the TME and the level of tolerance and detoxification strategy adopted by S. fruticosa. Relative growth rate (RGR) decreased under Cd2+ stress in this species, whereas Cu2+ did not have any impact on S. fruticosa performance. Cd2+ or Cu2+ enhanced malondialdehyde, suggesting reactive oxygen species-induced disruption of membrane integrity and oxidative stress in S. fruticosa. On the other hand, the activities of the antioxidant enzymes CAT, APX, and GPX diminished and mineral nutrition was disturbed by metal stress. S. fruticosa was able to synthesize PCs in response to TME toxicity. However, data indicate that GSH levels underwent a significant decrease in roots and leaves of S. fruticosa stressed by Cd2+ or Cu2+. The GSH depletion accompanied by the increase of phytochelatin concentration suggests the involvement of GSH in the synthesis of phytochelatins.info:eu-repo/semantics/publishedVersio
    corecore