45 research outputs found

    Association between mental flexibility and somatic symptom disorder mediated by smartphone addiction among university students

    Get PDF
    Background: Smartphone addiction is categorized as a behavioral addiction that in adolescents and youths can affect many aspects of life, including education and physical health, and is accompanied by such problems as reduced interpersonal problems, anger, aggression, and emotion. This study designed to assess the association between mental flexibility and somatoform mediated by smartphone addiction among university students in 2020. Methods: The study was a descriptive correlation performed employing path analysis. The study population included all students of the Islamic Azad University of Ahvaz in the academic year 2020-2021, 251 students were selected using simple random sampling. In the present research, we utilized the Somatic Symptoms Experiences Questionnaire (SSEQ), Smartphone Addiction Scale (SAS), and Cognitive Flexibility Inventory (CFI). The proposed model was assessed using path analysis with AMOS version 23.0 software. Results: There was a negative and significant association between mental flexibility and smartphone addiction (β=-0.47, P=0.001). Moreover, there was a positive association between smartphone addiction and somatoform (β=0.41, P=0.001). There was no significant association between mental flexibility and somatoform (β=-0.10, P=0.07). The path analysis results showed the mediating role of smartphone addiction in the association between mental flexibility and somatoform in university students (β=-0.27, P=0.001). Conclusion: Our model had a good fit, and, as a result, it could be helpful as an important step in identifying the aspects affecting the somatic symptom disorder of university students with smartphone addiction

    The role of medicinal plants in the treatment of diabetes: a systematic review.

    Get PDF
    INTRODUCTION Diabetes is a serious metabolic disorder and plenty of medical plants are used in traditional medicines to treat diabetes. These plants have no side effects and many existing medicines are derived from the plants. The purpose of this systematic review is to study diabetes and to summarize the available treatments for this disease, focusing especially on herbal medicine. METHODS Required papers about diabetes and effective plants were searched from the databases, including Science direct, PubMed, Wiley, Scopus, and Springer. Keywords in this study are "medicinal plants", "diabetes", "symptom", "herbal", and "treatment". Out of the 490 collected articles (published in the period between 1995 and 2015), 450 were excluded due to non-relevance or lack of access to the original article. RESULTS Diabetes is mainly due to oxidative stress and an increase in reactive oxygen species that can have major effects. Many plants contain different natural antioxidants, in particular tannins, flavonoids, C and E vitamins that have the ability to maintain β-cells performance and decrease glucose levels in the blood. CONCLUSION According to published results, it can be said that medical plants are more affordable and have less side effects compared synthetic drugs, and are more effective in treatment of diabetes mellitus

    Radiation Therapy in Patients With Brain Cancer: Post-proteomics Interpretation

    Get PDF
    Introduction: Radiation Therapy (RT) as a common method for cancer treatment could conclude in some side effects. Molecular investigation is one of the approaches that could assist in decrypting the molecular mechanisms of this incident. For this aim, protein-protein interaction network analysis as a complementary study of proteome is applied to explore the RT effect on brain cancer effect after the early stage of exposure prior to skin lesion appears.Methods: Cytoscape 3.7.2 and its plug-ins analyzed the network of DEPs in the treatment condition and the centrality and pathway enrichments were conducted by the use of NetworkAnalyzer and ClueGO+CluePedia.Results:  A network of 15 DEPs indicated that six nodes are key players in the network stability and SERPINC1 and F5 are from the query proteins. Pathways of post-translational protein phosphorylation, Platelet degranulation, and Complement and coagulation cascades are the most highlighted ones for the central nodes that could be affected in radiation therapy.Conclusion: The central proteins of the network of early stage treatments could have additional importance in the mechanisms of radiotherapy response prior to skin lesions. These candidates worth precise attention for this type of therapy after approving by validation studies

    Arginase 1 (Arg1) as an Up-Regulated Gene in COVID-19 Patients: A Promising Marker in COVID-19 Immunopathy

    Get PDF
    Background: The coronavirus disease 2019 (COVID-19) outbreak, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been declared a global pandemic. It is well-established that SARS-CoV-2 infection can lead to dysregulated immune responses. Arginase-1 (Arg1), which has a pivotal role in immune cells, can be expressed in most of the myeloid cells, e.g., neutrophils and macrophages. Arg1 has been associated with the suppression of antiviral immune responses. Methods: Whole blood was taken from 21 COVID-19 patients and 21 healthy individuals, and after RNA extraction and complementary DNA (cDNA) synthesis, gene expression of Arg1 was measured by real-time PCR. Results: The qPCR results showed that the expression of Arg1 was significantly increased in COVID-19 patients compared to healthy individuals (p < 0.01). The relative expression analysis demonstrated there were approximately 2.3 times increased Arg1 expression in the whole blood of COVID-19 patients. Furthermore, the receiver operating characteristic (ROC) analysis showed a considerable diagnostic value for Arg1 expression in COVID-19 (p = 0.0002 and AUC = 0.8401). Conclusion: Arg1 might be a promising marker in the pathogenesis of the disease, and it could be a valuable diagnostic tool

    The Role of Hemoglobin Subunit Delta in the Immunopathy of Multiple Sclerosis: Mitochondria Matters

    Get PDF
    Although the exact pathophysiology of MS has not been identified, mitochondrial stress can be one of the culprits in MS development. Herein, we have applied microarray analysis, single-cell sequencing analysis, and ex vivo study to elucidate the role of mitochondrial stress in PBMCs of MS patients

    Insights into the role of matrix metalloproteinases in precancerous conditions and in colorectal cancer

    Get PDF
    Colorectal cancer (CRC) is the third and second cancer for incidence and mortality worldwide, respectively, and is becoming prevalent in developing countries. Most CRCs derive from polyps, especially adenomatous polyps, which can gradually transform into CRC. The family of Matrix Metalloproteinases (MMPs) plays a critical role in the initiation and progression of CRC. Prominent MMPs, including MMP-1, MMP-2, MMP-7, MMP-8, MMP-9, MMP-12, MMP-13, MMP-14, and MMP-21, have been detected in CRC patients, and the expression of most of them correlates with a poor prognosis. Moreover, many studies have explored the inhibition of MMPs and targeted therapy for CRC, but there is not enough information about the role of MMPs in polyp malignancy. In this review, we discuss the role of MMPs in colorectal cancer and its pathogenesi

    Coronavirus Disease 2019: A Brief Review of the Clinical Manifestations and Pathogenesis to the Novel Management Approaches and Treatments

    Get PDF
    The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coronavirus disease 2019 (COVID-19) in China, which spread to the rest of the world, led the World Health Organization to classify it as a global pandemic. COVID-19 belongs to the Bettacoronavirus genus of the Coronaviridae family, and it mainly spreads through the respiratory tract. Studies have now confirmed a human-to-human transmission as the primary pathway of spread. COVID-19 patients with a history of diseases such as respiratory system diseases, immune deficiency, diabetes, cardiovascular disease, and cancer are prone to adverse events (admission to the intensive care unit requiring invasive ventilation or even death). The current focus has been on the development of novel therapeutics, including antivirals, monoclonal antibodies, and vaccines. However, although there is undoubtedly an urgent need to identify effective treatment options against infection with COVID-19, it is equally important to clarify management protocols for the other significant diseases from which these patients may suffer, including cancer. This review summarizes the current evidence regarding the epidemiology, pathogenesis, and management of patients with COVID-19. It also aims to provide the reader with insights into COVID-19 in pregnant patients and those with cancer, outlining necessary precautions relevant to cancer patients. Finally, we provide the available evidence on the latest potent antiviral drugs and vaccines of COVID-19 and the ongoing drug trials

    Gene-Set Enrichment Analysis for Identifying Genes and Biological Activities Associated with Growth Traits in Dromedaries

    Get PDF
    Simple Summary This project aimed to find biological themes affecting growth in dromedaries. Candidate SNPs associated with growth were mapped to 22 genes, and 25 significant themes were identified related to growth. The main biological functions included calcium ion binding, protein binding, DNA-binding transcription factor activity, protein kinase activity, tropomyosin binding, myosin complex, actin-binding, ATP binding, receptor signaling pathway via JAK-STAT, and cytokine activity. EFCAB5, MTIF2, MYO3A, TBX15, IFNL3, PREX1, and TMOD3 genes are candidates for improving growth in camel breeding programs. Growth is an important heritable economic trait for dromedaries and necessary for planning a successful breeding program. Until now, genome-wide association studies (GWAS) and QTL-mapping have identified significant single nucleotide polymorphisms (SNPs) associated with growth in domestic animals, but in dromedaries, the number of studies is very low. This project aimed to find biological themes affecting growth in dromedaries. In the first step, 99 candidate SNPs were chosen from a previously established set of SNPs associated with body weight, gain, and birth weight in Iranian dromedaries. Next, 0.5 kb upstream and downstream of each candidate SNP were selected from NCBI (assembly accession: GCA_000803125.3). The annotation of fragments with candidate SNPs regarding the reference genome was retrieved using the Blast2GO tool. Candidate SNPs associated with growth were mapped to 22 genes, and 25 significant biological themes were identified to be related to growth in dromedaries. The main biological functions included calcium ion binding, protein binding, DNA-binding transcription factor activity, protein kinase activity, tropomyosin binding, myosin complex, actin-binding, ATP binding, receptor signaling pathway via JAK-STAT, and cytokine activity. EFCAB5, MTIF2, MYO3A, TBX15, IFNL3, PREX1, and TMOD3 genes are candidates for improving growth in camel breeding programs

    A scoping review on the potentiality of PD-L1-inhibiting microRNAs in treating colorectal cancer: Toward single-cell sequencing-guided biocompatible-based delivery

    Get PDF
    Tumoral programmed cell death ligand 1 (PD-L1) has been implicated in the immune evasion and development of colorectal cancer. Although monoclonal immune checkpoint inhibitors can exclusively improve the prognosis of patients with microsatellite instability-high (MSI-H) and tumor mutational burden-high (TMB-H) colorectal cancer, specific tumor-suppressive microRNAs (miRs) can regulate multiple oncogenic pathways and inhibit the de novo expression of oncoproteins, like PD-L1, both in microsatellite stable (MSS) and MSI-H colorectal cancer cells. This scoping review aimed to discuss the currently available evidence regarding the therapeutic potentiality of PD-L1-inhibiting miRs for colorectal cancer. For this purpose, the Web of Science, Scopus, and PubMed databases were systematically searched to obtain peer-reviewed studies published before 17 March 2021. We have found that miR-191-5p, miR-382-3p, miR-148a-3p, miR-93-5p, miR-200a-3p, miR-200c-3p, miR-138-5p, miR-140-3p, and miR-15b-5p can inhibit tumoral PD-L1 in colorectal cancer cells. Besides inhibiting PD-L1, miR-140-3p, miR-382-3p, miR-148a-3p, miR-93-5p, miR-200a-3p, miR-200c-3p, miR-138-5p, and miR-15b-5p can substantially reduce tumor migration, inhibit tumor development, stimulate anti-tumoral immune responses, decrease tumor viability, and enhance the chemosensitivity of colorectal cancer cells regardless of the microsatellite state. Concerning the specific, effective, and safe delivery of these miRs, the single-cell sequencing-guided biocompatible-based delivery of these miRs can increase the specificity of miR delivery, decrease the toxicity of traditional nanoparticles, transform the immunosuppressive tumor microenvironment into the proinflammatory one, suppress tumor development, decrease tumor migration, and enhance the chemosensitivity of tumoral cells regardless of the microsatellite state

    Immune checkpoints in targeted-immunotherapy of pancreatic cancer: New hope for clinical development

    Get PDF
    Immunotherapy has been recently considered as a promising alternative for cancer treatment. Indeed, targeting of immune checkpoint (ICP) strategies have shown significant success in human malignancies. However, despite remarkable success of cancer immunotherapy in pancreatic cancer (PCa), many of the developed immunotherapy methods show poor therapeutic outcomes in PCa with no or few effective treatment options thus far. In this process, immunosuppression in the tumor microenvironment (TME) is found to be the main obstacle to the effectiveness of antitumor immune response induced by an immunotherapy method. In this paper, the latest findings on the ICPs, which mediate immunosuppression in the TME have been reviewed. In addition, different approaches for targeting ICPs in the TME of PCa have been discussed. This review has also synopsized the cutting-edge advances in the latest studies to clinical applications of ICP-targeted therapy in PCa
    corecore