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Background: Although the exact pathophysiology of MS has not been identified,
mitochondrial stress can be one of the culprits in MS development. Herein, we have
applied microarray analysis, single-cell sequencing analysis, and ex vivo study to elucidate
the role of mitochondrial stress in PBMCs of MS patients.

Methods: For this purpose, we analyzed the GSE21942 and GSE138266 datasets to
identify the DEGs and hub genes in the PBMCS of MS patients and describe the
expression of shared genes in the different immune cells. The GO pathway analysis of
DEGs and turquoise module genes were conducted to shed light on their biological
significance. To validate the obtained results, the gene expression of HBD, as the most
remarkable DEG in the PBMCS of affected patients, was measured in the PBMCS of
healthy donors, treatment-naïve MS patients, and MS patients treated with GA,
fingolimod, DMF, and IFNb-1a.

Results: Based on WGCNA and DEGs analysis, HBD, HBM, SLC4A1, LILRA5,
SLC25A37, SELENBP1, ALYREF, SNRNP40, and HINT3 are the identified common
genes in the PMBCS. Using single-cell sequencing analysis on PBMCS, we have
characterized various cell populations in MS and illustrated the common gene
expression on the different immune cells. Furthermore, GO pathway analysis of DEGs,
and turquoise module genes have indicated that these genes are involved in immune
responses, myeloid cell activation, leukocyte activation, oxygen carrier activity, and
replication fork processing bicarbonate transport pathways. Our ex vivo investigation
has shown that HBD expression in the treatment-naïve RRMS patients is significantly
increased compared to healthy donors. Of interest, immunomodulatory therapies with
fingolimod, DMF, and IFNb-1a have significantly decreased HBD expression.

Conclusion: HBD is one of the remarkably up-regulated genes in the PBMCS of MS
patients. HBD is substantially up-regulated in treatment-naïve MS patients, and
immunomodulatory therapies with fingolimod, DMF, and IFNb-1a can remarkably
down-regulate HBD expression. Based on the currently available evidence, the
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cytoprotective nature of HBD against oxidative stress can be the underlying reason for
HBD up-regulation in MS. Nevertheless, further investigations are needed to shed light on
the molecular mechanisms of HBD in the oxidative stress of MS patients.

Keywords: multiple sclerosis, mitochondrial injury, oxidative stress, immune cells, peripheral blood mononuclear
cells, HBD, single-cell RNA sequencing

INTRODUCTION

MS is an inflammatory demyelinating disease of the CNS that
affects more than 2.5 million people worldwide (1). In MS,
myelin-directed immunity led by immune cells’ infiltration to
CNS can damage the myelin sheath of axons, oligodendrocytes,
and neurons (2).

Since epidemiological studies have shown that the relatives of
affected individuals are at a higher risk of developing severe MS,
genetic factors have been implicated in its pathogenesis (3, 4).
However, environmental factors, e.g., latitude, also have roles in
its pathogenesis (5). Therefore, it is commonly considered as the
result of multifactorial factors, i.e., genetic predisposition and
exposure to certain environmental factors. Acute inflammation,
which leads to chronic inflammation, is the cornerstone of MS
initiation. The release of pro-inflammatory cytokines and ROS
have been implicated in MS progression (6). Growing evidence
has indicated that mitochondrial oxidative stress plays a pivotal
role in the pathogenesis of MS (7). Witte et al. have shown that
mtHSP70, as the biomarker of mitochondrial stress, has been
remarkably up-regulated in MS lesions (8). Furthermore,
Gonzalo et al. have demonstrated that the redox status of
PBMCs has been considerably impaired, leading to ROS
overproduction (9). In line with these, the results of
randomized clinical trials have shown that administrating
coenzyme Q10, as a potent antioxidant, can lead to promising
results for MS patients (10–12). Therefore, a better understanding
of the mitochondrial stress in PBMCs is needed for developing
novel targeted therapy for MS patients.

Technological, proteomics, and metabolomics offer ample
opportunities to unravel molecular mechanisms involved in
MS pathogenesis. WGCNA, one of the systems computational
approaches, is an easy way to correlate genes with similar
expression patterns (13–15). It also can be extended to uncover
highly correlated molecules and separate group modules,
revealing the connection between hub genes and external
sample traits. On the other hand, scRNA-seq has facilitated
novel and deeper insight into the expression of marker genes.
Therefore, we have used microarray and scRNA-seq data to
identify essential genes involved in MS pathogenesis and
investigate their interactions as a unique system. In addition,
we have investigated the expression of HBD, as a gene that has
critical roles in oxidative stress, in healthy donors, treatment-
naïve MS patients, and MS patients treated with GA, fingolimod,
DMF, and IFNb-1a to validate the results of in-silico analysis.

MATERIALS AND METHODS

In-Silico Analysis
Microarray Data Study
The GSE21942 microarray dataset was downloaded from the
GEO database (https://www.ncbi.nlm.nih.gov/geo/). This dataset
was based on the Agilent GPL570 platform (HG-U133_Plus_2
Affymetrix Human Genome U133 Plus 2.0 Array) and included
29 samples, i.e., PBMCs from MS patients and healthy subjects
(16). The raw data were corrected, quantile-normalized, and
probe IDs were converted to gene symbols. Gene symbols were
filtered across all samples through their variance. Only genes
with variances ranked in the top 5000 were selected for
subsequent analyses.

Identification of DEGs
The R software was used to identify the DEGs between the
PBMCs of healthy individuals and MS patients. After analyzing
values in each sample, adjusted p-value<0.0001 and |logFC|≥2
were set as the cut-off criteria. Besides, the up-and down-
regulated genes, -log (adjusted p-value), and logFC of each
gene were used to plot the volcano plot.

Constructing Co-Expression Modules in Multiple Sclerosis
A co-expression network for the gene expression data related to
patient and healthy groups has been reconstructed using the
protocols of the WGCNA package. Following the scale-free
topological algorithm, when the b value was set to 8, the
adjacency matrix met the scale-free topology criteria. Based on
the adjacency matrix, the TOM and dis-TOM were achieved.
Finally, as clusters of highly interconnected genes, the modules

Abbreviations: MS, Multiple sclerosis; DEGs, differentially expressed genes;
scRNA-seq, single-cell RNA sequencing; RRMS, relapsing-remitting multiple
sclerosis; DMF, dimethyl fumarate; IFNb-1a, interferon-beta 1-alpha; CNS,
central nervous system; ROS, reactive oxygen species; PBMCs, peripheral blood
mononuclear cells; WGCNA, Weighted gene co-expression network analysis;
GEO, Gene Expression Omnibus; TOM, topological overlap matrix; dis-TOM,
dissimilarity TOM; ME, module eigengene; GS, gene significance; MM, module
membership; GO, Gene Ontology; MDOCE, Molecular Complex Detection; CSF,
Cerebrospinal fluid; PCA, principal component analysis; GAPDH,
Glyceraldehyde-3-phosphate dehydrogenase; HBD, Hemoglobin Subunit Delta;
HBM, Hemoglobin Subunit Mu; SLC4A1, Solute Carrier Family 4 Member 1;
LILRA5, Leukocyte Immunoglobulin Like Receptor A5; SLC25A37, Solute Carrier
Family 25 Member 37; SELENBP1, Selenium Binding Protein 1; ALYREF, Aly/
REF Export Factor; SNRNP40, Small Nuclear Ribonucleoprotein U5 Subunit 40;
HINT3, Histidine Triad Nucleotide Binding Protein 3; STRING, Search Tool for
the Retrieval of Interacting Genes/Proteins; AHSP, Alpha Hemoglobin Stabilizing
Protein; HINT3, Histidine Triad Nucleotide Binding Protein 3; DNAJC14, DnaJ
Heat Shock Protein Family, Hsp40) Member C14; STRADB, STE20 Related
Adaptor Beta; MAT2A, Methionine Adenosyltransferase 2A; GLUD2, Glutamate
Dehydrogenase 2; ATAD2B, ATPase Family AAA Domain Containing 2B; GLUD1,
Glutamate Dehydrogenase 1.
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were defined with a minimum module size of 30 genes per
module and a cut height of 0.004.

Constructing Module-Trait Relationships in
Multiple Sclerosis
To recognize modules that were significantly related to the
evaluated clinical trait, the expression profiles of each module
were summarized by its ME as the eigenvector correlated to the
first principal component of the expression matrix. The GS
values were used for measuring individual genes’ associations
with disease. Also, MM was defined as the correlation of the ME
and the gene expression profile for each module. If the GS and
MM were highly correlated, the most significant (central)
elements in the modules were also closely associated with the
trait. So, they could be used to construct the network and identify
the hub-genes. Finally, genes with both GS and MM ≥0.86 were
chosen as hub genes. Furthermore, a co-expression network
consisted of hub genes was constructed by geneMANIA plug-
in Cytoscape v3.8.1 (17).

Identification of Common Hub Genes and DEGs
Venn diagram was generated using the “Venny” v 2.1 software
freely available (http://bioinfogp.cnb.csic.es/tools/venny/) to
identify common genes between hub genes and DEGs.
Common genes were considered the central genes correlated to
MS pathogenesis and applied for further analyses.

Heatmap Analysis for Common Genes
In the current study, we used heatmap analysis to demonstrate
the visualized differences of common hub genes and DEGs
between the PBMCs from healthy individuals and MS patients.

Functional Annotation of the MS Correlated
Module Genes and DEGs
To reveal the biologic function and pathway of selected modules
and DEGs, functional GO terms and KEGG pathway were
enriched using ClueGO v2.5.7 and CluePedia v1.5.7 plug-in of
Cytoscape v3.8.1 (17). Enriched ontological terms and pathways
were conducted with the threshold of Benjamin-adjusted
p-value< 0.001.

PPI Network
The identified turquoise module members and hubs were
subjected to STRING v11 plug-in of Cytoscape v3.8.1 to find
possible PPI with the confidence score ≥ 0.700 and 0 interactors
as the cut-off criteria (17, 18). The predicted PPI networks were
then analyzed with the MDOCE v1.5.1 to detect highly
interconnected regions (clusters) with the following cut-off
criteria, node degree ≥ 2, node score ≥ 0.2, node density ≥ 0.5,
and without haircutting (19).

Single-Cell Transcriptome Analysis of Common
Candidate Genes in MS Samples
Data Acquisition, Quality Control, and
Dimensionality Reduction
As we shown in the previous study,we assessed the raw data from
a study by Schafflick et al. (20, 21). The original survey applied
single-cell transcriptomics to PBMC and CSF cells from MS

patients and controls and validated vital findings. The raw single-
cell RNA-seq data from their study were deposited in GEO
(GSE138266) (22). The Scanpy toolkit was leveraged for data
analyses (23). First, quality control was performed to filter low-
quality cells. For this purpose, we only retained cells that had
(1) more than 500 genes, (2) less than 17500 counts, and (3) less
than 20% of reads mapped to mitochondrial genes. Normalized
expression is calculated using the normalize_total function in
Scanpy, or the calculates factors from SCRAN, which could
estimate size factors for each cell to remove bias within the cell
counts and improve cross-cell comparison of cell expression
values. To enable unsupervised clustering and cell-type
identification, dimensionality reduction was performed with
the top 4000 most highly variable genes for PCA. PCA on the
combined set of samples for each sample after selection of highly
variable genes. Once embedded in this PCA space, we
constructed a nearest neighbor graph identifying the k = 15
nearest neighbors for each cell. We derived uniform manifold
approximation (UMAP) embeddings presented for visualization
from this most relative neighbor graph using a minimum
distance of 0.5 and a spread of 1.0 (24).

Clustering and Cell-Type Identification
We used Louvain community detection to the nearest neighbor
graph constructed in PCA space to define a cluster partition (21,
25). To annotate the clusters, we used two marker sets. First,
differential expression test was performed by a Welch t-test with
overestimated variance to find genes that are up-regulated in the
cluster compared to all other clusters (marker genes). Second,
using official CellMarker website (http://biocc.hrbmu.edu.cn/
CellMarker/), we found marker genes of each cell type. This
database comprised 2867 cell type marker sets and 467 cell types
from 1764 studies.

Ex Vivo Validation
Patients and Samples
Forty-five MS patients and twenty-four healthy donors were
enrolled in this study. The study was approved by the Ethics
Committee of Tabriz University of Medical Sciences
(IR.TBZMED.REC.1399.074), and all participants received written
informed consent. Demographic data were collected by a
questionnaire. Participants with other comorbidities were
excluded from the study.

Sample Collection, RNA Extraction, and
cDNA Synthesis
Ten milliliters (ml) of venous blood were collected to isolate
PBMC by the Ficoll method. Total RNA was isolated using
TRIzol, according to the manufacturer’s instructions (Riboex,
Gene All Biotechnology, Seoul, Korea). Then, cDNA synthesis
was performed using a cDNA Reverse Transcription kit (BioFact,
South Korea).

Real-Time PCR
Relative expression of the HBD gene was measured by real-time
PCR. 2X Master Mix with high ROX (Biofact, Korea) was used
for the current study. The real-time PCR conditions were as
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follows: initial denaturation 13 min, 95°C, 45 cycles of
denaturation; 13s, 95°C; annealing, 30s, 60°C; elongation 20s,
72°C. The specific primer sequences which were used in this
study are mentioned as follows: HBD (F:5′‐TCACGGCTGA
GATTCGACAG‐3′, R:5′‐ CCTGCGAGAGCCATAGCATC‐3’)
and GAPDH (F:5′‐AAGGTGAAGGTCGGAGTCAAC‐3′, R: 5′‐
GGGGTCATTGATGGCAACAA‐3′). GAPDH was used as an
internal control. Relative gene expression was calculated using
the comparative 2-delta CT method.

Statistical Analysis
The R software (version 4.0.2) and GraphPad Prism (version 7.05)
(GraphPad Software, Inc., San Diego, CA) were used to conduct the
statistical analysis. The utilized R packages in this study were
WGCNA, Biobase, GEOquery, LIMMA, AgiMicroRna, Affy,
pheatmap, reshape, and Rmisc as ggplot2, which could be used to
plot the analyzed data. Differences between the study groups were
tested via one-way analysis of variance (ANOVA). The data were
presented as mean ± SD, and p < 0.05 was considered significant for
all tests.

RESULTS

In-Silico Analysis
Microarray Data Study
Identification of DEGs
A total of 62 genes have been identified as DEGs with the
threshold of adjusted p-value< 0.0001 and |logFC|≥2, including

51 up-regulated and 11 down-regulated genes in the PBMCs of
MS patients compared to the PBMCs of healthy individuals
(Figure 1). The most up-regulated genes are SLC25A37, HBD,
NEAT1, and the most down-regulated ones were ALYREF,
ARF6, and HINT3. These 62 DEGs were then selected for
subsequent analyses. The most important biological functions
and pathways of the candidate DEGs have been oxygen carrier
activity, replication fork processing, and bicarbonate
transport (Figure 2A).

The Identification of Weighted Gene Co-Expression
Network Analysis Module
Based on the variance of expression values, a total of 5000
genes have been included in WGCNA. Two outliers have been
observed; thus, the rest of the samples have been included for
further assessment (Figure S1). Afterward, b=8 has been
selected as soft-threshold power, and the weighted co-
expression network of MS patients and normal samples have
been reconstructed (Figure S2). Then, a hierarchical clustering
dendrogram has identified modules and illustrated them in
branches of the dendrogram with different colors (Figure S3).
The number of genes on each module varied from 42
(darkolivegreen) to 898 (turquoise) (Table S1). Also, 77
genes have not been classified into any modules (designated
as grey).

Module-Trait Association Analysis
Eigengenes have been calculated for each module to
determine the association of the modules with the presence
of disease in samples and module-module correlation. It has

FIGURE 1 | Volcano plot of DEGs between MS and healthy samples. Volcano plot, the vertical axis (y-axis) is the mean value of- log 10 (adj P-value), and the
horizontal axis (x-axis) is the value of logFC. Red dots denote the up-regulated genes; green dots represent the down-regulated genes.
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been indicated that the turquoise module can be positively
correlated with multiple sclerosis (r= 0.93, p-value=2.00E-12)
(Figure S4, and Table S1). The turquoise module genes
enrichment that they were involved in myeloid cell
activation during immune responses and leukocyte
activation (Figure 2B).

Hub-Genes Detection and Enrichment Analysis
The correlation between features (MM and GS) of the turquoise
module can detect the hub-genes of interest that are highly
associated with MS pathogenesis (Figure S5). The co-expression
network of hub genes has been reconstructed using GeneMANIA
and Cytoscape software. These Hub-genes are SELENBP1, HBD,
HBM, AHSP, HINT3, SNRNP40, DNAJC14, STRADB, STT3A,
ALYREF, SLC25A37, ILRA5, MAT2A, GLUD2, ATAD2B,
GLUD1, TOMM22, etc. (Figure 3).

Common Hub Genes and DEGs
Nine genes, i.e., HBD, HBM, SLC4A1, LILRA5, SLC25A37,
SELENBP1, ALYREF, SNRNP40, and HINT3, have been
defined as the primary common genes between the turquoise
module and DEGs for further assessment (Table 1). The average
logFc of candidate genes has varied from -2.20 to 3.9. Besides, the
expression value of the hub genes in patients and healthy individuals
of selected datasets is illustrated in the heatmap (Figure 4).

The Co-Expression of Hubs and PPI Network of Turquoise
Module Members
The association of turquoise members at the protein level has
been analyzed by the STRING plug-in of Cytoscape. Among
the 898 genes related to the mentioned module, 311 are in the
same network according to the cut-off criteria (Figure 5). HBD
and SLC25A37, as highly expressed genes in the MS group
based on the DEG analysis, are considered in a cluster network

with MCODE score=4.615. Our results have shown that HBD
can interact with AHSP, HBE1, HBQ1, ALAS2, EPB42, and
SLC4A1 . Besides, SLC25A37 can interact with FECH
and ALAS2.

Single-Cell Transcriptome Analysis of Common
Candidate Genes in MS Samples
Differential Cell-Type Proportion Analysis
Next, we have performed single-cell transcriptome analyses to
characterize cell-type-specific molecular signatures of MS in all
sub-type of PBMCs. Schafflick et al. recently reported the
molecular signature of MS pathogenicity in CSF and PBMCs
samples using scRNA-seq technologies (20). Since most of the
cells in this dataset are PBMC cells, this dataset can provide
valuable data for understanding the expression profile of our hub
genes. We use the latest development package, Scanpy, to analyze
the scRNA-seq data (23). A total of 40515 single-cell transcriptomes
have passed stringent quality control measures. Louvain clustering
and cell annotation have been employed to identify significant cell
populations. We have assessed the distribution of cell numbers for
each cluster by comparing the total number of cells from the MS
group to controls. As shown in Figure 6, 12 different cell types have
been clustered based on the specific markers between control and
MS patients. Based on marker genes from scanpy (Figure S6) and
CellMarker database, we annotated these clusters. The final marker
genes is listed in Table 2. Cell types were including Naive T cell,
CD14+ mono, Activated CD8+ T cell, Treg cell, NKT, Activated B
cell, Naive B cell, Monocytes, Dendritic cell (DC), Plasmacytoid DC,
Myeloid DC, and gd T cells. We compared the proportion of the
classified PBMC cells and found that healthy derived cells contain
more Treg cell but contain fewer NKT and Activated B cell.
(Figure 6). However these differences between cell types were
not significant.

A

B

FIGURE 2 | Gene ontology and pathway analysis of DEGs and turquoise module genes through CluePedia. (A) The most important biological functions and
pathways of the candidate DEGs. (B) GO and pathway related to turquoise genes.
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TABLE 1 | The log FC of common candidate genes.

Gene symbol Log FC Adj P-Value Average Log FC Up-/Down regulation

HBD 3.917962 5.57E-08 3.917962 Up-regulated
SELENBP1 2.514832 3.88E-07 2.514832
HBM 2.997071 4.90E-08 2.997071
SLC4A1 0.153719 0.295992 1.424233
SLC4A1 2.694747 5.89E-07
SLC25A37 0.063121 0.585563 0.766813
SLC25A37 0.112888 0.74432
SLC25A37 0.460471 0.002461
SLC25A37 0.658764 0.001326
SLC25A37 0.713774 0.00056
SLC25A37 1.173177 5.68E-06
SLC25A37 1.210109 8.29E-05
SLC25A37 1.249593 8.54E-06
SLC25A37 1.25942 3.90E-06
SLC25A37 3.070904 3.21E-08
LILRA5 -2.45055 1.89E-07 -1.1595975 Down-regulated
LILRA5 -2.40091 1.23E-06
LILRA5 0.046202 0.410648
LILRA5 0.166868 0.292597
ALYREF -2.18091 4.90E-08 -1.6205
ALYREF -1.06009 7.72E-06
SNRNP40 -2.05482 2.16E-07 -2.05482
HINT3 -3.13221 1.31E-07 -2.2038933
HINT3 -1.79537 1.34E-07
HINT3 -1.6841 3.04E-06

Shared genes between the turquoise module and DEGs (Up/down-regulated genes). A p-value less than 0.05 is statistically significant.

FIGURE 3 | The co-expression network of Hub-genes. Hub genes imported to GeneMANIA to construct a co-expression and gene interactions network. The circle
is representing the genes. Edge: lines represent interactions between two genes (multiple lines correspond to multiple sources).
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Visualisation of Shared Genes in a Single Cell Resolution
In order to understand the gene expression behaviour of shared
hub-genes from WGCNA part at a single cell resoloution, the
expression pattern of different PBMC cells were visualized using
UMAP (Figure 7). As depicted in Figure 7, HBD, SELENBP1,
HBM, SLC4A1, SLC25A37, LILRA5, ALYREF, SNRNP40, and
HINT3 expression behaviour were compared in different louvain
clusters. Among them, only LILRA5 was expressed in specific cell
types (Monocytes and CD14+ mono cells), and other genes were
expressed in all clusters. Based on consideration of HBD gene for
downstream analysis, we compared expression of this gene in
different clusters between control and MS samples. Interestingly,
the result showed elevated expression values of HBD gene in
Plasmacytoid DC and gd T cells in MS samples while DC,
Monocytes, Naive B cell, and Treg cells showed a decreased
expression in MS samples. Other cell populations didn’t show

significant differences for HBD expression between control and
MS samples (Figure 8).

Ex Vivo Study
In the current study, we have enrolled forty MS patients who
received fingolimod, DMF, IFNb-1a, and GA. Five MS patients,
who have not received any agents, have been considered
treatment-naïve patients. The demographical and clinical
features of the patients and healthy donors are demonstrated
in Table 3.

The Expression Levels of the HBD in the PBMCs of
MS Patients and Healthy Individuals
The real-time PCR technique has been used to evaluate the gene
expression of HBD in the PBMCs of MS patients treated with
fingolimod (n=10), DMF (n=10), IFNb-1a (n=10), and GA

FIGURE 5 | Co-expression of hubs and PPI network of turquoise module members.

FIGURE 4 | Heatmaps of common gene expression related to the MS and healthy samples. The up-regulated and down-regulated genes are shown as a red and
blue pallet, respectively.
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(n=10), and treatment-naïve MS patients (n=5). As shown in
Figure 9, HBD mRNA expression has been significantly up-
regulated in the treatment-naïve MS patients compared with

healthy individuals (P < 0.01). Besides, the HBD expression
levels in MS patients treated with fingolimod, DMF, and IFNb-
1a have been significantly decreased compared to the treatment-
naïve MS patients (P<0.01, P<0.0001, and P<0.0001,
respectively) (Figure 9).

DISCUSSION

It takes gathering pieces of information over time to comprehend
MS pathogenicity (26, 27). Critical information that should be
integrated includes the genetic background and the cross-talk
between the immune system and CNS (28). To accomplish this
aim, we have applied a microarray dataset related to PBMCs
from MS patients and healthy individuals to evaluate the gene
expression using the WGCNA package. We have investigated the
common hub genes and DEGs below: HBD, SELENBP1, HBM,

TABLE 2 | Marker genes used for cell type annotation in the current study.

Cell type Marker gene

Treg cell CCR10, CCR4, IL2RA, FOXP3, CTLA4
Naive B cell CD74, CD79A, CD37, IGHD
Activated B cell CD74, CD79A, CD27, IGHM
Naive T cell CCR7, TCF7, NOSIP, LEF1
Monocytes FCGR3A, MS4A7
gd T cells TRDC
NKT NKG7, GNLY, KLRC1, FLT3
Dendritic cell CD1C, FCER1A, CLEC10A
CD14+ mono CD14, FCGR3A
Activated CD8+ T cell CD8A, CD8B, CCL5
Myeloid DC LYZ, BATF3
Plasmacytoid DC TCF4, TNFRSF21

A B

C

FIGURE 6 | Transcriptomic comparison of MS versus control PBMCs. (A) UMAP projection of cells with the normal situation (n=17138) colored in dark blue and
cells from MS samples (n=25831) were visualized in light blue. (B) Louvain clustering and cell annotation was employed to identify 12 major cell populations.
(C) Bar graphs quantify and compare the proportion of single-cell data of control and MS samples.
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SLC4A1, SLC25A37, LILRA5, ALYREF, SNRNP40, and HINT3.
Moreover, GO pathway analysis of DEGs and turquoise module
genes have revealed the remarkable roles of these molecules
during the immune response and, specifically, in the myeloid cell
activation, leukocyte activation, oxygen carrier activity,
replication fork processing, and bicarbonate transport. Besides,
we have analyzed a recently published data set of scRNA-seq
related to PBMCs of MS. We have used Louvain clustering and
identified the marker for the 12 cell populations. Our results have
indicated that HBD, SLC25A37, HBM, SELENBP1, and SLC4A1
are the remarkably up-regulated genes in the PBMCs of MS
patients. Then, we validated the expression level of HBD as a
critical gene introduced in mitochondrial stress of white blood
cells in the healthy donors, treatment-naive MS patients, and
treated MS patients. In the following, the critical roles of HBD
and SLC25A37 in oxidative stress based on the available
literature are discussed.

For the HBD gene expression analysis in the individual cells
(both MS and control), we performed a cluster comparison of
HBD gene expression between the control and MS samples. It

appears that Plasmacytoid DC and gd T cells from MS patients
have higher expression of the HBD gene, but DC, Monocytes,
Naive B cells, and Treg cells show lower expression.

The increased expression of hemoglobin, e.g., HBD, has been
reported in inflammatory conditions. Kobayash et al. have
shown that the expression of HBD has been considerably
increased in patients with vasculitis (29). Moreover, Brunyanszki
et al. have indicated that critical inflammatory illness, e.g., severe
burn injury and sepsis, can result in the up-regulation ofHBD in the
PBMCs of the affected patients. Besides, HBD expression has been
associated with decreased H2O2-induced damage to the nuclear and
the mitochondrial DNA of PBMCs of patients with sepsis (30).
Consistent with this, the up-regulation of HBD in the leukocytes of
patients with sepsis has been attributed to pro-inflammatory
conditions, in which HBD can serve as a cytoprotective factor
(31). In line with these findings, Särkijärvi et al. have shown that the
gene expression of hemoglobin-b and hemoglobin-a2 are both up-
regulated in the mononuclear blood cells of the monozygotic MS
patients, indicating the potential role of hemoglobin in the
pathogenicity of MS (32). Appealingly, increased hemoglobin

FIGURE 7 | Selected hub-genes expression in different cell populations. The shared genes showed different expression values between other immune cells.
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expression has been documented in the pyramidal neural cells of
MS patients (33–35). Consistent with these, the expression level of
HBD in treatment-naïveMS patients has been considerably elevated
compared to healthy individuals. Of interest, following
immunomodulatory therapies, i.e., fingolimod, DMF, and IFNb-
1a, and attenuation of inflammation, HBD expression level in the
PBMCs from studied patients has been remarkably reduced. There
are two theories for the hemoglobin up-regulation in inflammatory
conditions; one school of thought advocates the protective role of
hemoglobin against oxidative stress in inflammation (30, 31), and
the other one states that the increased HBD expression might be
stemmed from the increased differentiation and mitosis of
hematopoietic stem cells to give rise the immune cells. Lotan
et al. have indicated that pleocytosis is associated with a worse
prognosis in MS patients; their results have demonstrated that
pleocytosis is associated with inferior annualized relapse rate and

the expanded disability status scale score in RRMS patients (36). In
line with this, Brunyanszki et al. have shown increased expression of
hematopoietic stem cell markers in the PBMCs of patients who have
experienced burn injury (30). Additionally, it has been shown that
the protein expression of hemoglobin is up-regulated during
monocyte differentiation, and its level is decreased as the
differentiation progresses (37).

SLC25A37 is responsible for regulating iron homeostasis via
transferring iron into the mitochondria matrix. Recent findings
indicate that siRNA-mediated mitoferrin-1 silencing can
substantially decrease the level of ROS (38). In line with this,
the knockdown of mitoferrin 1 has been associated with
decreased ROS production in Alzheimer’s disease (39). Indeed,
ROS overproduction and mitochondrial damage are among the
main culprits of MS pathogenicity both in immune cells and
oligodendrocytes (6). Consistent with these findings, Gonzalo

FIGURE 8 | Expression behaviour of HBD gene in different Louvain cluster.

TABLE 3 | Classification based on the sex and medication.

Groups Fingolimod (n=10) IFNb-1a (n=10) DMF (n=10) GA (n=10) Naïve patients(n=5) Healthy control(n=24)

Age (Mean age ± SD) 34.3 ± 6.1 35.1 ± 10.3 28 ± 6 33.7 ± 7.2 34 ± 5 29.54 ± 7.4
Female n (%) 7 (70%) 7 (70%) 7 (70%) 7 (70%) 4 (80%) 14 (58.3%)

IFNb-1a, Interferon-beta 1-alpha; GA, Glatiramer acetate; DMF, Dimethyl fumarate, SD, standard deviation.
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et al. have demonstrated that the mitochondrial respiratory chain
complexes are remarkably damaged. The ROS production is
considerably increased in MS patients compared to control
individuals (9). Our bioinformatic analysis displayed
SLC25A37 as one of the up-regulated genes in the PBMCs of
MS patients. However, further investigations are required to
clarify these conflicting results and shed new light on
disease pathophysiology.

Besides, our analysis has revealed that HBM, SELENBP1, and
SLC4A1 are also up-regulated in the PBMCs of MS patients;
however, further investigations are needed to be conducted to
investigate whether they have roles in the oxidative stress of MS
or not.

Our study has several strengths. First, it is the first study that
integrated the data from bioinformatics and ex vivo study to
present the role of HBD in the pathogenesis of MS. Second, it is
the first study investigating the effect of fingolimod, DMF, IFNb-
1a, and GA on the expression level of HBD in MS patients.
However, the current study has several limitations as well. First,
we could not measure the protein expression of HBD. Second, we
did not do the age matching between the age of the patients and
healthy donors.

CONCLUSION

The current study has indicated that HBD expression in PBMCs
from MS patients is substantially up-regulated and can be
considerably down-regulated by the immunomodulatory
therapies, i.e., fingolimod, DMF, and IFNb-1a. The increased

expression of HBD in the PBMCs of MS patients can be stemmed
from the protective role of hemoglobin against oxidative injury
and the inflammatory nature of MS, which can lead to increase
differentiation and mitosis of hematopoietic stem cells. This
study provides a novel insight into the role of mitochondrial
oxidative stress in MS pathogenicity. It offers an opportunity for
further investigations regarding the role of HBD inMS pathogenicity.
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