76 research outputs found

    Increasing the raw contrast of VLT/SPHERE with the dark-hole technique. II. On-sky wavefront correction and coherent differential imaging

    Full text link
    Context. Direct imaging of exoplanets takes advantage of state-of-the-art adaptive optics (AO) systems, coronagraphy, and post-processing techniques. Coronagraphs attenuate starlight to mitigate the unfavorable flux ratio between an exoplanet and its host star. AO systems provide diffraction-limited images of point sources and minimize optical aberrations that would cause starlight to leak through coronagraphs. Post-processing techniques then estimate and remove residual stellar speckles such as noncommon path aberrations (NCPAs) and diffraction from telescope obscurations. Aims. We aim to demonstrate an efficient method to minimize the speckle intensity due to NCPAs during an observing night on VLT/SPHERE. Methods. We implement an iterative dark-hole (DH) algorithm to remove stellar speckles on-sky before a science observation. It uses a pair-wise probing estimator and a controller based on electric field conjugation. This work presents the first such on-sky minimization of speckles with a DH technique on SPHERE. Results. We show the standard deviation of the normalized intensity in the raw images is reduced by a factor of up to 5 in the corrected region with respect to the current calibration strategy under median conditions for VLT. This level of contrast performance obtained with only 1 min of exposure time reaches median performances on SPHERE that use post-processing methods requiring 1h-long sequences of observations. We also present an alternative calibration method that takes advantage of the starlight coherence and improves the post-processed contrast levels rms by a factor of about 3. Conclusions. This on-sky demonstration represents a decisive milestone for the future design, development, and observing strategy of the next generation of ground-based exoplanet imagers for 10m to 40m telescope.Comment: Accepted in Astronomy & Astrophysic

    Observing Strategies for the NICI Campaign to Directly Image Extrasolar Planets

    Full text link
    We discuss observing strategy for the Near Infrared Coronagraphic Imager (NICI) on the 8-m Gemini South telescope. NICI combines a number of techniques to attenuate starlight and suppress superspeckles: 1) coronagraphic imaging, 2) dual channel imaging for Spectral Differential Imaging (SDI) and 3) operation in a fixed Cassegrain rotator mode for Angular Differential Imaging (ADI). NICI will be used both in service mode and for a dedicated 50 night planet search campaign. While all of these techniques have been used individually in large planet-finding surveys, this is the first time ADI and SDI will be used with a coronagraph in a large survey. Thus, novel observing strategies are necessary to conduct a viable planet search campaign.Comment: 12 pages, 10 figures, submitted to Proceedings of the SPI

    Fundamental limitations of high contrast imaging set by small sample statistics

    Get PDF
    In this paper, we review the impact of small sample statistics on detection thresholds and corresponding confidence levels (CLs) in high contrast imaging at small angles. When looking close to the star, the number of resolution elements decreases rapidly towards small angles. This reduction of the number of degrees of freedom dramatically affects CLs and false alarm probabilities. Naively using the same ideal hypothesis and methods as for larger separations, which are well understood and commonly assume Gaussian noise, can yield up to one order of magnitude error in contrast estimations at fixed CL. The statistical penalty exponentially increases towards very small inner working angles. Even at 5-10 resolution elements from the star, false alarm probabilities can be significantly higher than expected. Here we present a rigorous statistical analysis which ensures robustness of the CL, but also imposes a substantial limitation on corresponding achievable detection limits (thus contrast) at small angles. This unavoidable fundamental statistical effect has a significant impact on current coronagraphic and future high contrast imagers. Finally, the paper concludes with practical recommendations to account for small number statistics when computing the sensitivity to companions at small angles and when exploiting the results of direct imaging planet surveys.Comment: 12 pages, 10 figures, accepted to Ap

    Early Results from VLT-SPHERE: Long-Slit Spectroscopy of 2MASS 0122-2439B, a Young Companion Near the Deuterium Burning Limit

    Get PDF
    We present 0.95-1.80 μ\mum spectroscopy of the \sim12-27 MJupM_{\rm Jup} companion orbiting the faint (RR\sim13.6), young (\sim120 Myr) M-dwarf 2MASS J01225093--2439505 ("2M0122--2439 B") at 1.5 arcsecond separation (50 AU). Our coronagraphic long-slit spectroscopy was obtained with the new high contrast imaging platform VLT-SPHERE during Science Verification. The unique long-slit capability of SPHERE enables spectral resolution an order of magnitude higher than other extreme AO exoplanet imaging instruments. With a low mass, cool temperature, and very red colors, 2M0122-2439 B occupies a particularly important region of the substellar color-magnitude diagram by bridging the warm directly imaged hot planets with late-M/early-L spectral types (e.g. β\beta Pic b and ROXs 42Bb) and the cooler, dusty objects near the L/T transition (e.g. HR 8799bcde and 2MASS 1207b). We fit BT-Settl atmospheric models to our RR\approx350 spectrum and find TeffT_{\rm eff}=1600±\pm100 K and log(g)\log(g)=4.5±\pm0.5 dex. Visual analysis of our 2M0122-2439 B spectrum suggests a spectral type L3-L4, and we resolve shallow JJ-band alkali lines, confirming its low gravity and youth. Specifically, we use the Allers & Liu (2013) spectral indices to quantitatively measure the strength of the FeH, VO, KI, spectral features, as well as the overall HH-band shape. Using these indices, along with the visual spectral type analysis, we classify 2M0122-2439 B as an intermediate gravity (INT-G) object with spectral type L3.7±\pm1.0.Comment: Accepted to ApJ Letters, 8 pages, 4 figures, some minor typographical issues were fixe

    The Gemini NICI Planet-Finding Campaign: The Offset Ring of HR 4796 A

    Get PDF
    We present J, H, CH_4 short (1.578 micron), CH_4 long (1.652 micron) and K_s-band images of the dust ring around the 10 Myr old star HR 4796 A obtained using the Near Infrared Coronagraphic Imager (NICI) on the Gemini-South 8.1 meter Telescope. Our images clearly show for the first time the position of the star relative to its circumstellar ring thanks to NICI's translucent focal plane occulting mask. We employ a Bayesian Markov Chain Monte Carlo method to constrain the offset vector between the two. The resulting probability distribution shows that the ring center is offset from the star by 16.7+/-1.3 milliarcseconds along a position angle of 26+/-3 degrees, along the PA of the ring, 26.47+/-0.04 degrees. We find that the size of this offset is not large enough to explain the brightness asymmetry of the ring. The ring is measured to have mostly red reflectivity across the JHK_s filters, which seems to indicate micron-sized grains. Just like Neptune's 3:2 and 2:1 mean-motion resonances delineate the inner and outer edges of the classical Kuiper Belt, we find that the radial extent of the HR 4796 A and Fomalhaut rings could correspond to the 3:2 and 2:1 mean-motion resonances of hypothetical planets at 54.7 AU and 97.7 AU in the two systems, respectively. A planet orbiting HR 4796 A at 54.7 AU would have to be less massive than 1.6 Mjup so as not to widen the ring too much by stirring.Comment: Accepted to A&A for publication on April 23, 2014 (15 pages, 9 figures, 4 tables

    NICI: combining coronagraphy, ADI, and SDI

    Full text link
    The Near-Infrared Coronagraphic Imager (NICI) is a high-contrast AO imager at the Gemini South telescope. The camera includes a coronagraphic mask and dual channel imaging for Spectral Differential Imaging (SDI). The instrument can also be used in a fixed Cassegrain Rotator mode for Angular Differential Imaging (ADI). While coronagraphy, SDI, and ADI have been applied before in direct imaging searches for exoplanets. NICI represents the first time that these 3 techniques can be combined. We present preliminary NICI commissioning data using these techniques and show that combining SDI and ADI results in significant gains.Comment: Proc. SPIE, Vol. 7014, 70141Z (2008

    A Direct Imaging Survey of Spitzer detected debris disks: Occurrence of giant planets in dusty systems

    Get PDF
    We describe a joint high contrast imaging survey for planets at Keck and VLT of the last large sample of debris disks identified by the Spitzer Space Telescope. No new substellar companions were discovered in our survey of 30 Spitzer-selected targets. We combine our observations with data from four published surveys to place constraints on the frequency of planets around 130 debris disk single stars, the largest sample to date. For a control sample, we assembled contrast curves from several published surveys targeting 277 stars which do not show infrared excesses. We assumed a double power law distribution in mass and semi-major axis of the form f(m,a) = CmαaβCm^{\alpha}a^{\beta}, where we adopted power law values and logarithmically flat values for the mass and semi-major axis of planets. We find that the frequency of giant planets with masses 5-20 MJupM_{\rm Jup} and separations 10-1000 AU around stars with debris disks is 6.27% (68% confidence interval 3.68 - 9.76%), compared to 0.73% (68% confidence interval 0.20 - 1.80%) for the control sample of stars without disks. These distributions differ at the 88% confidence level, tentatively suggesting distinctness of these samples.Comment: Accepted to A

    The Spitzer c2d Survey of Nearby Dense Cores: III: Low Mass Star Formation in a Small Group, L1251B

    Get PDF
    We present a comprehensive study of a low-mass star-forming region,L1251B, at wavelengths from the near-infrared to the millimeter. L1251B, where only one protostar, IRAS 22376+7455, was known previously, is confirmed to be a small group of protostars based on observations with the Spitzer Space Telescope. The most luminous source of L1251B is located 5" north of the IRAS position. A near-infrared bipolar nebula, which is not associated with the brightest object and is located at the southeast corner of L1251B, has been detected in the IRAC bands. OVRO and SMA interferometric observations indicate that the brightest source and the bipolar nebula source in the IRAC bands are deeply embedded disk sources.Submillimeter continuum observations with single-dish telescopes and the SMA interferometric observations suggest two possible prestellar objects with very high column densities. Outside of the small group, many young stellar object candidates have been detected over a larger region of 12' x 12'. Extended emission to the east of L1251B has been detected at 850 micron; this "east core" may be a site for future star formation since no point source has been detected with IRAC or MIPS. This region is therefore a possible example of low-mass cluster formation, where a small group of pre- and protostellar objects (L1251B) is currently forming, alongside a large starless core (the east core).Comment: 35 pages, 15 figures, accepted for publication in ApJ, for the full resolution paper, visit "http://peggysue.as.utexas.edu/SIRTF/PAPERS/pap27.pub.pdf

    Performance of the Near-infrared coronagraphic imager on Gemini-South

    Full text link
    We present the coronagraphic and adaptive optics performance of the Gemini-South Near-Infrared Coronagraphic Imager (NICI). NICI includes a dual-channel imager for simultaneous spectral difference imaging, a dedicated 85-element curvature adaptive optics system, and a built-in Lyot coronagraph. It is specifically designed to survey for and image large extra-solar gaseous planets on the Gemini Observatory 8-meter telescope in Chile. We present the on-sky performance of the individual subsystems along with the end-to-end contrast curve. These are compared to our model predictions for the adaptive optics system, the coronagraph, and the spectral difference imaging.Comment: Proc. SPIE, Vol. 7015, 70151V (2008
    corecore