14 research outputs found

    Accretion, Soft and Hard Collision: Similarities, Differences and an Application from the Newfoundland Appalachian Orogen

    Get PDF
    We argue there is no distinction between accretion and collision as a process, except when accretion is used in the sense of incorporating small bodies of sedimentary and/or volcanic rocks into an accretionary wedge by off-scraping or underplating. There is also a distinction when these terms are used in classifying mountain belts into accretionary and collisional orogens, although such classifications are commonly based on a qualitative assessment of the scale and nature of the accreted terranes and continents involved in formation of mountain belts. Soft collisions occur when contractional deformation and associated metamorphism are principally concentrated in rocks of the leading edge of the partially pulled-down buoyant plate and the upper plate forearc terrane. Several young arc-continent collisions show evidence for partial or wholesale subduction of the forearc such that the arc is structurally juxtaposed directly against lower plate rocks. This process may explain the poor preservation of forearcs in the geological record. Soft collisions generally change into hard collisions over time, except if the collision is rapidly followed by formation of a new subduction zone due to step-back or polarity reversal. Thickening and metamorphism of the arc's suprastructure and retro-arc part of upper plate due to contractional deformation and burial are the characteristics of a hard collision or an advancing Andean-type margin. Strong rheological coupling of the converging plates and lower and upper crust in the down-going continental margin promotes a hard collision. Application of the soft–hard terminology supports a structural juxtaposition of the Taconic soft collision recorded in the Humber margin of western Newfoundland with a hard collision recorded in the adjacent Dashwoods block. It is postulated that Dashwoods was translated dextrally along the Cabot-Baie Verte fault system from a position to the north of Newfoundland where the Notre Dame arc collided ca. 10 m.y. earlier with a wide promontory in a hyperextended segment of the Laurentian margin.Nous soutenons qu'il n'y a pas de distinction entre l'accrĂ©tion et la collision en tant que processus, sauf lorsque l'accrĂ©tion est utilisĂ©e dans le sens d'incorporer de petits corps de roches sĂ©dimentaires et / ou volcaniques dans un prisme d'accrĂ©tion par raclage ou sous-placage. Il y a Ă©galement une distinction lorsque ces termes sont utilisĂ©s pour classer les chaĂźnes de montagne en orogĂšnes d'accrĂ©tion et de collision, bien que ces classifications soient gĂ©nĂ©ralement basĂ©es sur une Ă©valuation qualitative de l'Ă©chelle et de la nature des terranes accrĂ©tĂ©s et des continents impliquĂ©s dans la formation des chaĂźnes de montagnes.Des collisions molles se produisent lorsque la dĂ©formation par contraction et le mĂ©tamorphisme associĂ© sont principalement concentrĂ©s dans les roches du front de la plaque chevauchante partiellement abaissĂ©e et du terrane d’avant-arc de la plaque supĂ©rieure. Plusieurs jeunes collisions arc-continent montrent des preuves d'une subduction partielle ou totale de l'avant-arc de telle sorte que l'arc est directement structurellement juxtaposĂ© contre les roches de la plaque infĂ©rieure. Ce processus peut expliquer la mauvaise prĂ©servation des avant-arcs dans les archives gĂ©ologiques. Les collisions molles se transforment gĂ©nĂ©ralement en collisions dures au fil du temps, sauf si la collision est rapidement suivie de la formation d'une nouvelle zone de subduction en raison d'un recul ou d'une inversion de polaritĂ©. L'Ă©paississement et le mĂ©tamorphisme de la suprastructure de l'arc et de la partie rĂ©tro-arc de la plaque supĂ©rieure dus Ă  la dĂ©formation par contraction et Ă  l'enfouissement sont les caractĂ©ristiques d'une collision dure ou d'une marge de type andin en progression. Un fort couplage rhĂ©ologique des plaques convergentes et de la croĂ»te infĂ©rieure et supĂ©rieure dans la marge continentale descendante favorise une collision dure.L'application de la terminologie molle-dure corrobore une juxtaposition structurelle de la collision molle taconique enregistrĂ©e dans la marge de Humber de l'ouest de Terre-Neuve avec une collision dure enregistrĂ©e dans le bloc de Dashwoods adjacent. Il est postulĂ© que le bloc de Dashwoods a Ă©tĂ© dĂ©placĂ© de maniĂšre dextre le long du systĂšme de failles Cabot-Baie Verte Ă  partir d'une position au nord de Terre-Neuve oĂč l'arc Notre Dame est entrĂ© en collision environ 10 m.a. plus tĂŽt avec un large promontoire dans un segment en hyper-extension de la marge laurentienne.

    Time-Transgressive Salinic and Acadian Orogenesis, Magmatism and Old Red Sandstone Sedimentation in Newfoundland

    Get PDF
    We propose an intimate relationship between Silurian terrestrial red bed sedimentation (Old Red Sandstone), slab breakoff-related magmatism and deformation in the Newfoundland Appalachians. Red bed sedimentation started during the Early Silurian, and records the progressive rise of the Salinic mountains in the tectonic hinterland of the orogen. The red beds were mainly deposited in molasse-style foreland basins in front of an east-propagating terminal Salinic deformation front. New U–Pb zircon dating of volcanic rocks interlayered with the Silurian red beds in key structural locations yielded ages ranging between 425 and 418 Ma, which, combined with the existing geochronological database, suggests that the sedimentary rocks are progressively younger from west to east and overstep the accreted Gondwana-derived terranes. We propose that deposition of the red beds is a good proxy for the time of cratonization of the accreted terranes. Eastward migration of the Salinic deformation front was accompanied by eastward-widening of a slab-breakoff-related asthenospheric window. The latter is interpreted to have formed due to a combination of progressive steepening of the down-going plate following entrance of the leading edge of the Gander margin and its eduction. Gander margin eduction (reversed subduction) is proposed to have been instigated by the trench migration of the Acadian coastal arc built upon the trailing edge of the Gander margin, which developed contemporaneously with the Salinic collision. The resultant thinning of the lithosphere beneath the Salinic orogen, built upon the leading edge of the Gander margin immediately prior to the onset of the Early Devonian Acadian orogeny, set the stage for generation of the widespread bloom of Acadian magmatism.SOMMAIRENous proposons qu’il y a eu une relation intime entre la sĂ©dimentation des couches rouges continentales au Silurien (vieux-grĂšs-rouges), un magmatisme liĂ© Ă  une rupture de segments de croĂ»te, et la dĂ©formation appalachienne Ă  Terre-Neuve.  La sĂ©dimentation des couches rouges qui a dĂ©butĂ© au dĂ©but du Silurien tĂ©moigne du soulĂšvement progressif des monts saliniques de l’arriĂšre-pays tectonique de l’orogĂšne.  Les couches rouges se sont dĂ©posĂ©es sous forme de molasses dans des bassins d’avant-pays, Ă  l’avant du front de dĂ©formation salinique terminale qui se dĂ©ployait vers l’est.  De nouvelles datations U-Pb sur zircon de roches volcaniques interstratifiĂ©es avec des couches rouges siluriennes en des lieux structurels stratĂ©giques montrent des Ăąges qui varient entre 425 Ma et 418 Ma, ce qui, combinĂ© aux bases de donnĂ©es gĂ©ochronologiques existantes permet de penser que les roches sĂ©dimentaires sont progressivement plus jeunes d’ouest en est, et qu’elles surplombent les terranes accrĂ©tĂ©s du Gondwana.  Nous suggĂ©rons que les couches rouges sont de bons indicateurs temporels de la cratonisation des terranes accrĂ©tĂ©s.  La migration vers l’est du front de la dĂ©formation salinique a Ă©tĂ© accompagnĂ©e par un Ă©largissement vers l’est d’une fenĂȘtre asthĂ©nosphĂ©rique liĂ©e Ă  une rupture de la croĂ»te.  Cette derniĂšre aurait Ă©tĂ© provoquĂ©e par la combinaison de l’enfoncement progressif de la plaque qui a suivi l’entrĂ©e du bord d’attaque de la marge de Gander, et son Ă©duction.  Nous proposons que l’éduction (l’inverse de la subduction) de la marge de Gander a Ă©tĂ© provoquĂ©e par la migration de la fosse tectonique cĂŽtiĂšre acadienne, induite par la migration du bord d’attaque de la marge de Gander, contemporaine de la collision salinique.  L’amincissement de la lithosphĂšre sous l’orogĂšne salinique qui en a rĂ©sultĂ©, et qui s’est dĂ©ployĂ© au bord d’attaque de la marge de Gander juste avant l’enclenchement de l’orogĂ©nie acadienne au dĂ©but du DĂ©vonien, a prĂ©parĂ© le terrain du dĂ©ploiement Ă  grande Ă©chelle du magmatisme acadien

    From Large Zones to Small Terranes to Detailed Reconstruction of an Early to Middle Ordovician Arc–Backarc System Preserved Along the Iapetus Suture Zone: A Legacy of Hank Williams

    Get PDF
    The Annieopsquotch accretionary tract (AAT) comprises a thrust stack of Lower to Middle Ordovician arc and backarc terranes that were accreted to the composite Laurentian margin of Iapetus during the Middle to Late Ordovician. Geological relationships suggest that the constituent terranes of the AAT initially formed outboard of the composite Laurentian margin in an extensional arc that underwent multiple rifting episodes prior to its accretion. The initiation of AAT magmatism led to the development of Tremadocian to Floian supra-subduction zone ophiolites (481 to 477 Ma) with organized ridges indicated by the presence of well-developed sheeted dyke complexes. This spreading centre propagated through a fragment of Laurentian crust and separated it from the composite Laurentian margin. This Laurentian crust fragment then formed the basement to subsequent Floian to Darriwilian AAT arc magmatism. The Floian arc (473 to 468 Ma) underwent extensive rifting indicated by organized spreading in the Lloyds River backarc basin, which was floored by juvenile backarc ophiolitic crust (472 Ma). The establishment of the Darriwilian arc (467 to 462 Ma) was in part coeval with yet another stage of rifting. Darriwilian magmatism is characterised by significant along-strike variability, ranging from continental to primitive calc-alkaline arc to tholeiitic backarc-like magmatism. The diversity of Darriwilian magmatism can be attributed to fragmentation and magmatic reworking of Laurenian-derived basement along strike in the same arc undergoing disorganized spreading. The development of the AAT is interpreted to be similar to that of the modern Izu – Bonin – Mariana arc in the western Pacific.SOMMAIRELa bande d’accrĂ©tion d’Annieopsquotch (AAT) est constituĂ©e d’un empilement de chevauchements de l’Ordovicien prĂ©coce Ă  moyen, et de terranes d’arc et d’arriĂšre-arc qui se sont accrĂ©tĂ©s Ă  la marge composite laurentienne japĂ©tienne Ă  l’Ordovicien moyen Ă  tardif.  Les faits gĂ©ologiques relevĂ©s portent Ă  penser que les terranes constitutifs de l’AAT se sont constituĂ©s Ă  l’extĂ©rieur de la marge laurentienne dans un arc d’extension qui a subi de multiples Ă©pisodes de rifting avant son accrĂ©tion.  L’initiation du magmatisme de l’AAT a menĂ© au dĂ©veloppement de zones d’ophiolites de supra-subduction du TrĂ©madocien au Floien (481 Ma Ă  477 Ma), avec des crĂȘtes ordonnĂ©es mises en Ă©vidence par la prĂ©sence de complexes de tapis de dikes bien dĂ©veloppĂ©s.  Ce centre d’extension s’est propagĂ© Ă  travers un fragment de la croĂ»te laurentienne, et l’a ultimement sĂ©parĂ© de la marge composite laurentienne.  Et, du Floien au Darriwilien, ce fragment de croĂ»te laurentienne a servi de substratum au magmatisme d’arc de l’AAT.  Au Floien (473 Ma Ă  468 Ma), cette zone d’arc a subi un important rifting, comme l’indique la distension ordonnĂ©e du bassin d’arriĂšre-arc de Lloyds River, lequel a servi de semelle Ă  une croĂ»te ophiolitique d’arriĂšre-arc (472 Ma).  La mise en place de l’arc au Darriwilien (467 Ma Ă  462 Ma) a coexistĂ© pour un temps avec un autre Ă©pisode de rifting.  Le magmatisme darriwilien est caractĂ©risĂ© par une variabilitĂ© de composition importante parallĂšlement Ă  sa direction, passant d’une composition d’arc continental Ă  celle d’arriĂšre-arc primitif calco-alcalin jusqu’à une composition de magmatisme de type tholĂ©iitique d’arriĂšre-arc.  La diversitĂ© du magmatisme darriwilien peut ĂȘtre attribuĂ©e Ă  la fragmentation et au remaniement magmatique de la croĂ»te d’origine laurentienne parallĂšlement Ă  la direction d’un mĂȘme arc subissant une distension dĂ©sordonnĂ©e.  Nous proposons que le dĂ©veloppement de l’AAT a Ă©tĂ© similaire Ă  celui de l’arc moderne Izy–Bonin–Marianne du Pacifique occidental

    Crustal Evolution of the Northeast Laurentian Margin and the Peri-Gondwanan Microcontinent Ganderia Prior to and During Closure of the Iapetus Ocean: Detrital Zircon U–Pb and Hf Isotope Evidence from Newfoundland

    Get PDF
    Detrital zircon populations in sedimentary rocks from the Laurentian margin and the accreted microcontinent Ganderia on both sides of the main Iapetus suture (Red Indian Line) in central Newfoundland have been studied by combined U–Pb and Lu–Hf isotope analyses. Variation in ΔHf(t) values with age of zircon populations of distal provenance (>900 Ma) reflect the crustal evolution within the source continents: in zircon derived from Laurentia, episodes of juvenile magma production in the source could be detected at 1.00 – 1.65 and 2.55 – 3.00 Ga, and mixing of juvenile and recycled crust in continental magmatic arcs occurred at 0.95 – 1.40, 1.45 – 1.60, 1.65 – 2.05 and 2.55 – 2.75 Ga. These ages are consistent with the crustal history of northeastern Laurentia. Similarly, zircon of distal provenance from Ganderia reveals times of juvenile magma production in the source at 0.70 – 0.90, 1.40 – 1.75, 1.85 – 2.40 and 2.7 – 3.5 Ga, and episodes of mixing juvenile and recycled crust at 0.95 – 1.35, 1.45 – 1.60, 1.70 – 2.15 and 2.6 – 2.8 Ga. These data reflect the crustal evolution in the present northern part of Amazonia, its likely source craton.      The evolution of magmatic arcs at the margins of both continents can be studied in a similar way using detrital zircon having a proximal provenance (<900 Ma). In contrast to the Laurentian margin, Ganderia is characterized by development of Neoproterozoic – Cambrian continental arcs (ca. 500 – 670 Ma) that were built on the margin of Gondwana. ΔHf(t) values indicate recycling of Neo- and Mesoproterozoic crust. During and following accretion of the various elements of Ganderia to Laurentia, the syn-tectonic Late Ordovician to Silurian sedimentary rocks deposited on the upper plate (composite Laurentia) continued showing only detritus derived from Laurentia. These sedimentary rocks contain detrital zircon from Iapetan juvenile, continental and successor arcs that were active between ca. 440 and 550 Ma, and from continuing magmatic activity until 423 Ma. Arrival of the first Laurentian detritus at the outermost part of Ganderia indicates that the Iapetus ocean was closed at ca. 452 Ma. The magmatic arcs along the former Laurentian margin in Newfoundland evolved differently. In the northwestern part, ΔHf(t) values point to recycling of Mesoproterozoic and Paleoproterozoic crust. In the southwest, ΔHf(t) values indicate addition of juvenile crust, recycling of Mesoproterozoic crust and mixing with juvenile magma. SOMMAIRELes populations de zircons dĂ©tritiques des roches sĂ©dimentaires issus de la marge laurentienne et du microcontinent d’accrĂ©tion de Ganderia, des deux cĂŽtĂ©s de la principale suture Iapetus (linĂ©ation de Red Indian) dans le centre de Terre-Neuve, ont Ă©tĂ© Ă©tudiĂ©s par analyses combinĂ©es U–Pb et Lu–Hf.  Les variations des valeurs ΔHf(t) en fonction de l’ñge des populations de zircons distaux (>900 Ma) reflĂštent l’évolution de la croĂ»te des continents sources : les zircons de Laurentie ont permis de dĂ©tecter des Ă©pisodes magmatiques juvĂ©niles dans la source entre 1,00 - 1,5, et 2,55 - 3,00 Ga, ainsi que des Ă©pisodes de mĂ©lange de croĂ»te juvĂ©nile avec des croĂ»tes d’arcs magmatiques continentaux recyclĂ©s entre 0,95 – 1,40, 1,45 – 1,60, 1,65 – 2,05, et 2,55 – 2,75 Ga.  Ces datations correspondent bien Ă  l’histoire de la croĂ»te de la portion nord-est de la Laurentie.  De mĂȘme, le zircon distal de Ganderia rĂ©vĂšle des Ă©pisodes de production de magmas juvĂ©niles dans la source entre 0,70 - 0,90, 1,40 - 1,75, 1,85 - 2,40, et 2,7 - 3,5 Ga, ainsi que des Ă©pisodes de mĂ©langes de matĂ©riaux juvĂ©niles et de croĂ»tes recyclĂ©s entre 0,95 - 1,35, 1,45 - 1,60, 1,70 - 2,15, et 2,6 - 2,8 Ga.  Ces donnĂ©es reflĂštent l’évolution de la croĂ»te dans la portion nord actuelle de l’Amazonie, son craton source probable.     L’évolution des arcs magmatiques Ă  la marge de ces deux continents peuvent ĂȘtre Ă©tudiĂ©es de la mĂȘme maniĂšre en utilisant le zircon dĂ©tritique proximal (<900 Ma).  Contrairement Ă  la marge laurentienne, celle de Ganderia est caractĂ©risĂ©e par le dĂ©veloppement d’arcs continentaux NĂ©oprotĂ©ozoĂŻque-Cambrien (env. 500 – 670 Ma) qui se sont constituĂ©s Ă  la marge du Gondvana.  Les valeurs de ΔHf(t) indiquent un recyclage de la croĂ»te au NĂ©oprotĂ©rozoĂŻque et au MĂ©soprotĂ©rozoĂŻque.  Durant et aprĂšs l’accrĂ©tion des divers Ă©lĂ©ments de Ganderia et de la Laurentie, les roches sĂ©dimentaires syntectoniques de la fin de l’Ordovicien et du Silurien qui se sont dĂ©posĂ©es sur la portion supĂ©rieure de la plaque (Laurentie composite) ne montrent toujours que des dĂ©bris provenant de la Laurentie.  Ces roches sĂ©dimentaires renferment des zircons dĂ©tritiques juvĂ©niles iapĂ©tiques, et d’arcs continentaux et d’arcs subsĂ©quents, qui ont Ă©tĂ© actifs entreentre (env. 440 et 550 Ma) et  d’une activitĂ© magmatique continue jusqu’à 423 Ma.  L’apport des premiers dĂ©bris Ă  la marge extrĂȘme de Ganderia indique que l’ocĂ©an s’est fermĂ©e il y a env. 452 Ma.  Les arcs magmatiques le long de l'ancienne marge laurentienne Ă  Terre-Neuve ont Ă©voluĂ© diffĂ©remment.  Dans la portion nord-ouest, les valeurs de ΔHf(t) indiquent un recyclage de la croĂ»te au MĂ©soprotĂ©rozoĂŻque et au PalĂ©oprotĂ©rozoĂŻque.  Dans la portion sud-ouest, les valeurs de ΔHf(t) indiquent l’ajout d’une croĂ»te juvĂ©nile, un recyclage de la croĂ»te mĂ©soprotĂ©rozoĂŻque et un mĂ©lange avec un magma juvĂ©nile

    Evidence of Late Ediacaran Hyperextension of the Laurentian Iapetan Margin in the Birchy Complex, Baie Verte Peninsula, Northwest Newfoundland: Implications for the Opening of Iapetus, Formation of PeriLaurentian Microcontinents and Taconic – Grampian Orogenesis

    Get PDF
    The Birchy Complex of the Baie Verte Peninsula, northwestern Newfoundland, comprises an assemblage of mafic schist, ultramafic rocks, and metasedimentary rocks that are structurally sandwiched between overlying ca. 490 Ma ophiolite massifs of the Baie Verte oceanic tract and underlying metasedimentary rocks of the Fleur de Lys Supergroup of the Appalachian Humber margin. Birchy Complex gabbro yielded a Late Ediacaran U–Pb zircon ID–TIMS age of 558.3 ± 0.7 Ma, whereas gabbro and an intermediate tuffaceous schist yielded LA–ICPMS concordia zircon ages of 564 ± 7.5 Ma and 556 ± 4 Ma, respectively. These ages overlap the last phase of rift-related magmatism observed along the Humber margin of the northern Appalachians (565–550 Ma). The associated ultramafic rocks were exhumed by the Late Ediacaran and shed detritus into the interleaved sedimentary rocks. Psammite in the overlying Flat Point Formation yielded a detrital zircon population typical of the Laurentian Humber margin in the northern Appalachians. Age relationships and characteristics of the Birchy Complex and adjacent Rattling Brook Group suggest that the ultramafic rocks represent slices of continental lithospheric mantle exhumed onto the seafloor shortly before or coeval with magmatic accretion of mid-ocean ridge basalt-like mafic rocks. Hence, they represent the remnants of an ocean – continent transition zone formed during hyperextension of the Humber margin prior to establishment of a mid-ocean ridge farther outboard in the Iapetus Ocean. We propose that microcontinents such as Dashwoods and the Rattling Brook Group formed as a hanging wall block and an extensional crustal allochthon, respectively, analogous to the isolation of the Briançonnais block during the opening of the Alpine Ligurian–Piemonte and Valais oceanic seaways.Le complexe de Birchy de la pĂ©ninsule de Baie Verte, dans le nord-ouest de Terre-Neuve, est constituĂ© d’un assemblage de schistes mafiques, de roches ultramafiques et de mĂ©tasĂ©diments qui sont coincĂ©s entre des massifs ophiolitiques d’ascendance ocĂ©anique de la Baie Verte au-dessus, et des mĂ©tasĂ©diments du Supergroupe de Fleur de Lys de la marge de Humber des Appalaches en-dessous. Le complexe de gabbro de Birchy a donnĂ© une datation U-Pb sur zircon ID-TIMS correspondant Ă  la fin de l’Édiacarien, soit 558,3 ± 0,7 Ma, alors qu’un gabbro et un schiste tufacĂ© intermĂ©diaire montrent une datation LA-ICP-MS Concordia sur zircon de 564 ± 7,5 Ma et 556 ± 4 Ma, respectivement. Ces datations chevauchent la derniĂšre phase de magmatisme de rift observĂ©e le long de la marge Humber des Appalaches du Nord (565-550 Ma). Les roches ultramafiques associĂ©es ont Ă©tĂ© exhumĂ©es vers la fin de l’Édiacarien et leurs dĂ©bris ont Ă©tĂ© imbriquĂ©s dans des roches sĂ©dimentaires. Les psammites de la Formation de Flat Point susjacente ont donnĂ© une population de zircons dĂ©tritiques typique de la marge laurentienne de Humber des Appalaches du Nord. Les relations chronologiques et les caractĂ©ristiques du complexe de Birchy et du groupe de Rattling Brook adjacent, permettent de penser que ces roches ultramafiques pourraient ĂȘtre des Ă©cailles de manteau lithosphĂ©rique continental qui auraient Ă©tĂ© exhumĂ©es sur le plancher ocĂ©anique peu avant ou en mĂȘme temps que l’accrĂ©tion magmatique de roches mafiques basaltiques de type dorsale mĂ©dio-ocĂ©anique. Par consĂ©quent, elles seraient des vestiges d’une zone de transition ocĂ©an-continent formĂ©e au cours de l’hyper-extension de la marge de Humber avant l’apparition d’une dorsale mĂ©dio-ocĂ©anique plus loin au large dans l’ocĂ©an IapĂ©tus. Nous proposons que des microcontinents comme de Dashwoods et du groupe de Rattling Brook ont constituĂ©s respectivement un bloc de toit et un allochtone crustal d’extension, de la mĂȘme maniĂšre que le bloc Briançonnais a Ă©tĂ© isolĂ© lors de l’ouverture des bras ocĂ©aniques alpins de Ligurie-PiĂ©mont et de Valais.Fil: Van Staal, Cees R.. Geological Survey of Canada; CanadĂĄFil: Chew, Dave M.. Trinity College Dublin; IrlandaFil: Zagorevski, Alexandre. Geological Survey of Canada; CanadĂĄFil: Mcnicoll, Vicki. Geological Survey of Canada; CanadĂĄFil: Hibbard, James. North Carolina State University; Estados UnidosFil: Skulski, Tom. Geological Survey of Canada; CanadĂĄFil: Castonguay, SĂ©bastien. Geological Survey of Canada; CanadĂĄFil: Escayola, Monica Patricia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de Estudios Andinos; ArgentinaFil: Sylvester, Paul J.. Memorial University Of Newfoundland; Canad

    Assembly of the Annieopsquotch Accretionary Tract, Newfoundland Appalachians: Age and Geodynamic Constraints from Syn‐Kinematic Intrusions

    Get PDF
    The Annieopsquotch Accretionary Tract (AAT) comprises several ophiolites and arc‐back‐arc igneous complexes that were accreted to the Dashwoods microcontinent during the Ordovician Taconic orogeny. The Lloyds River Fault Zone, which separates the AAT from the Dashwoods microcontinent, yielded 40Ar/39Ar hornblende ages of ca. 470 Ma. The fault zone was intruded syn‐kinematically by the shoshonitic Portage Lake monzogabbro and the Pierre’s Pond suite, which gave U/Pb zircon ages of Ma plus Ma and Ma, respectively. The Otter Pond granodiorite intruded syn‐kinematically into the Otter Brook Shear Zone, which separates the Annieopsquotch ophiolite belt from the structurally underlying ophiolitic Lloyds River Complex. It yielded a U/Pb zircon age of Ma. The Buchans arc and its continental basement were accreted to the Lloyds River Complex prior to 468 Ma. Syn‐kinematic plutons have arc affinity, with ΔNd ranging between −0.9 and −6.8, and are coeval with the adjacent Notre Dame Arc. Our data thus suggest the majority of the AAT was accreted to the Dashwoods microcontinent by 468 Ma, when consanguineous, dominantly arclike plutons intruded within the AAT and adjacent Notre Dame Arc. The Portage Lake monzogabbro and Otter Pond mafic suite are more mafic than Notre Dame Arc plutons of similar age because of their intrusion into the thin, mafic crust of the AAT and ascent along shear zones. Our data indicate the formation and subsequent accretion of ophiolites and arc‐back‐arc complexes occurred within a very short time span (5–10 Ma). The sources of AAT syn‐orogenic magmatism are diverse and include melting of subarc mantle during slab breakoff, lithospheric mantle, and lower crust. The Ordovician Appalachian margin of Laurentia grew by the accretion of oceanic terranes and intrusion of mantle‐derived magma. Recycling of continental crust by rifting and subsequent collision played an important part of the tectonic evolution of the AAT

    Accretion, Soft and Hard Collision: Similarities, Differences and an Application from the Newfoundland Appalachian Orogen

    Get PDF
    We argue there is no distinction between accretion and collision as a process, except when accretion is used in the sense of incorporating small bodies of sedimentary and/or volcanic rocks into an accretionary wedge by off-scraping or underplating. There is also a distinction when these terms are used in classifying mountain belts into accretionary and collisional orogens, although such classifications are commonly based on a qualitative assessment of the scale and nature of the accreted terranes and continents involved in formation of mountain belts.Soft collisions occur when contractional deformation and associated metamorphism are principally concentrated in rocks of the leading edge of the partially pulled-down buoyant plate and the upper plate forearc terrane. Several young arc-continent collisions show evidence for partial or wholesale subduction of the forearc such that the arc is structurally juxtaposed directly against lower plate rocks. This process may explain the poor preservation of forearcs in the geological record. Soft collisions generally change into hard collisions over time, except if the collision is rapidly followed by formation of a new subduction zone due to step-back or polarity reversal. Thickening and metamorphism of the arc's suprastructure and retro-arc part of upper plate due to contractional deformation and burial are the characteristics of a hard collision or an advancing Andean-type margin. Strong rheological coupling of the converging plates and lower and upper crust in the down-going continental margin promotes a hard collision.Application of the soft–hard terminology supports a structural juxtaposition of the Taconic soft collision recorded in the Humber margin of western Newfoundland with a hard collision recorded in the adjacent Dashwoods block. It is postulated that Dashwoods was translated dextrally along the Cabot-Baie Verte fault system from a position to the north of Newfoundland where the Notre Dame arc collided ca. 10 m.y. earlier with a wide promontory in a hyperextended segment of the Laurentian margin.Nous soutenons qu'il n'y a pas de distinction entre l'accrĂ©tion et la collision en tant que processus, sauf lorsque l'accrĂ©tion est utilisĂ©e dans le sens d'incorporer de petits corps de roches sĂ©dimentaires et / ou volcaniques dans un prisme d'accrĂ©tion par raclage ou sous-placage. Il y a Ă©galement une distinction lorsque ces termes sont utilisĂ©s pour classer les chaĂźnes de montagne en orogĂšnes d'accrĂ©tion et de collision, bien que ces classifications soient gĂ©nĂ©ralement basĂ©es sur une Ă©valuation qualitative de l'Ă©chelle et de la nature des terranes accrĂ©tĂ©s et des continents impliquĂ©s dans la formation des chaĂźnes de montagnes.Des collisions molles se produisent lorsque la dĂ©formation par contraction et le mĂ©tamorphisme associĂ© sont principalement concentrĂ©s dans les roches du front de la plaque chevauchante partiellement abaissĂ©e et du terrane d’avant-arc de la plaque supĂ©rieure. Plusieurs jeunes collisions arc-continent montrent des preuves d'une subduction partielle ou totale de l'avant-arc de telle sorte que l'arc est directement structurellement juxtaposĂ© contre les roches de la plaque infĂ©rieure. Ce processus peut expliquer la mauvaise prĂ©servation des avant-arcs dans les archives gĂ©ologiques. Les collisions molles se transforment gĂ©nĂ©ralement en collisions dures au fil du temps, sauf si la collision est rapidement suivie de la formation d'une nouvelle zone de subduction en raison d'un recul ou d'une inversion de polaritĂ©. L'Ă©paississement et le mĂ©tamorphisme de la suprastructure de l'arc et de la partie rĂ©tro-arc de la plaque supĂ©rieure dus Ă  la dĂ©formation par contraction et Ă  l'enfouissement sont les caractĂ©ristiques d'une collision dure ou d'une marge de type andin en progression. Un fort couplage rhĂ©ologique des plaques convergentes et de la croĂ»te infĂ©rieure et supĂ©rieure dans la marge continentale descendante favorise une collision dure.L'application de la terminologie molle-dure corrobore une juxtaposition structurelle de la collision molle taconique enregistrĂ©e dans la marge de Humber de l'ouest de Terre-Neuve avec une collision dure enregistrĂ©e dans le bloc de Dashwoods adjacent. Il est postulĂ© que le bloc de Dashwoods a Ă©tĂ© dĂ©placĂ© de maniĂšre dextre le long du systĂšme de failles Cabot-Baie Verte Ă  partir d'une position au nord de Terre-Neuve oĂč l'arc Notre Dame est entrĂ© en collision environ 10 m.a. plus tĂŽt avec un large promontoire dans un segment en hyper-extension de la marge laurentienne

    An oceanic core complex preserved in the Squanga Lake ophiolite, northern Atlin terrane, Yukon

    No full text
    International audienceThe Squanga Lake ophiolite of southern Yukon exhibits a non-Penrose pseudostratigraphy with mantle tectonites separated from upper crustal rocks by an extensional detachment zone (Squanga Lake detachment zone, SLDZ), compatible with formation in an oceanic core complex. Spinel, orthopyroxene and clinopyroxene mineral compositions indicate dynamic re-crystallisation during exhumation of ophiolitic mantle rocks. The rocks and structures of the SLDZ also preserve evidence of exhumation: 1) clasts of primitive olivine-cumulates in the SLDZ mélange represent excised lower oceanic crust; 2) structures in the SLDZ indicate ductile to brittle conditions; 3) temperatures along the SLDZ span from upper- to lower-amphibolite facies conditions. We obtained 248.77 ± 0.22, 248.53 ± 0.41, and 248.84 ± 2.09 Ma U-Pb zircon ages from upper crustal gabbro, a gabbro fragment within the SLDZ mélange and a dyke within the SLDZ implying syn-kinematic magmatism. Calc-silicate alteration associated with cross-cutting diabase dykes yielded a Usingle bondPb titanite age of 247 ± 10.5 Ma. All igneous rocks show similar geochemical signatures with ubiquitous subduction input. Our data indicate that Squanga Lake ophiolite preserves an oceanic core complex, formed in a back-arc basin environment

    Geochemical constraints on the origin of the Annieopsquotch ophiolite belt, Newfoundland Appalachians

    No full text
    The Early Ordovician Annieopsquotch ophiolite belt occurs immediately west of the main Iapetus suture zone, and imposes important constraints on the tectonic processes associated with closure of the peri-Laurentian portion of Iapetus. The Annieopsquotch ophiolite, the most prominent ophiolite within the Annieopsquotch ophiolite belt, exposes a 5.5-km-thick section of gabbros, sheeted dikes, and pillow basalts, in which three magmatic episodes have been recognized based on field and geochemical data. The first phase is composed of layered troctolites, which are preserved as enclaves within the gabbro zone. Trace element modeling suggests the troctolites crystallized from boninitic melts. The troctolite substrate was intruded by the dominant, second, tholeiitic magmatic phase, which formed a gabbro-sheeted dike-basalt sequence. All tholeiites have suprasubduction zone chemical characteristics, but the suprasubduction zone signature decreases toward the top of the basalt sequence. The third magmatic episode is composed of primitive dikes, which are interpreted as off-axis intrusions. Other ophiolites within the Annieopsquotch ophiolite belt have comparable geochemical signatures, suggesting they may have constituted a single piece of oceanic lithosphere. Based on geochemical and regional tectonic constraints, the Annieopsquotch ophiolite belt is interpreted to have formed during initiation of west-directed subduction. Fast rollback of the subducting slab would have induced volatile-fluxed decompression melting of previously depleted mantle, yielding boninitic melts. The suprasubduction zone tholeiite sequence would have formed from ascending fertile mantle fluxed with sub-duction-related fluids as rollback continued. This suggests that the Annieopsquotch ophiolite belt does not represent the remnants of normal oceanic crust or backarc basin crust, as previously thought. Our model constrains the initiation and early evolution of a west-dipping peri-Laurentian subduction zone that was responsible for formation of several arc-backarc complexes currently preserved in the Annieopsquotch Accretionary Tract
    corecore