49 research outputs found

    Effects of mole fraction variations and scaling on total variability in InGaAs MOSFETs

    Get PDF
    Variability is one of the major roadblocks for III-V semiconductors in nanoscale devices, according to the recent International Roadmap for Devices and Systems (IRDS). A particular concern is the detrimental effect of variability of threshold voltage due to channel compositional variations. In this paper, we investigate the impact of this variability source and the effects of scaling on the performance of Dual-Gate-Ultra-Thin-Body (DG-UTB) In0.53Ga0.47As MOSFETs. We model mole fraction variations in terms of the Indium content by taking into account the spatial inhomogeneity of the channel and the corresponding bandgap variations, analyzing the effects on threshold voltage variability. We thus define a variability source, i.e., Band Gap Fluctuation (BGF), and we compare the associated variability with the ones from other important sources, namely, Random Dopant Fluctuation (RDF), Work Function Fluctuation (WFF), Body- and Gate-Line Edge Roughness (B-LER and G-LER). We then define three corner cases for mole fraction variations to determine worst-case variability. Finally, the impact of scaling on variability is assessed by comparing results for two technology nodes on the linear and saturation threshold voltage, V-T,V-lin,V- V-T,V-sat, on-current, I-ON, leakage current, I-OFF, and linear and saturation sub-threshold slope, SS. We find that although scaling has no impact on BGF-induced V-T variability, it increases the total V-T, lin variability as well as that for I-ON and I-OFF

    Oral Feeding Competences of Healthy Preterm Infants: A Review

    Get PDF
    Background. With increasing sophistication and technology, survival rates hugely improved among preterm infants admitted to the neonatal intensive care unit. Nutrition and feeding remain a challenge and preterm infants are at high risk of encountering oral feeding difficulties. Objective. To determine what facts may impact on oral feeding readiness and competence and which kind of interventions should enhance oral feeding performance in preterm infants. Search Strategy. MEDILINE database was explored and articles relevant to this topic were collected starting from 2009 up to 2011. Main Results. Increasingly robust alertness prior to and during feeding does positively impact the infant's feeding Skills. The review found that oral and non-oral sensorimotor interventions, provided singly or in combination, shortened the transition time to independent oral feeding in preterm infants and that preterm infants who received a combined oral and sensorimotor intervention demonstrated more advanced nutritive sucking, suck-swallow and swallow-respiration coordination than those who received an oral or sensorimotor intervention singly

    Radioisotopic purity and imaging properties of cyclotron-produced 99mTc using direct 100Mo(p,2n) reaction

    Get PDF
    Evaluation of the radioisotopic purity of technetium-99m (99mTc) produced in GBq amounts by proton bombardment of enriched molibdenum-100 (100Mo) metallic targets at low proton energies (i.e. within 15\u201320 MeV) is conducted. This energy range was chosen since it is easily achievable by many conventional medical cyclotrons already available in the nuclear medicine departments of hospitals. The main motivation for such a study is in the framework of the research activities at the international level that have been conducted over the last few years to develop alternative production routes for the most widespread radioisotope used in medical imaging. The analysis of technetium isotopes and isomeric states (9xTc) present in the pertechnetate saline Na99mTcO4 solutions, obtained after the extraction/purification procedure, reveals radionuclidic purity levels basically in compliance with the limits recently issued by European Pharmacopoeia 9.3 (2018 Sodium pertechnetate (99mTc) injection 4801\u20133). Moreover, the impact of 9xTc contaminant nuclides on the final image quality is thoroughly evaluated, analyzing the emitted high-energy gamma rays and their influence on the image quality. The spatial resolution of images from cyclotron-produced 99mTc acquired with a mini-gamma camera was determined and compared with that obtained using technetium-99m solutions eluted from standard 99Mo/99mTc generators. The effect of the increased image background contribution due to Compton-scattered higher-energy gamma rays (E \u3b3 \u2009\u2009>\u2009\u2009200\u2009keV), which could cause image-contrast deterioration, was also studied. It is concluded that, due to the high radionuclidic purity of cyclotron-produced 99mTc using 100Mo(p,2n)99mTc reaction at a proton beam energy in the range 15.7\u201319.4 MeV, the resulting image properties are well comparable with those from the generator-eluted 99mTc

    Periostin Responds to Mechanical Stress and Tension by Activating the MTOR Signaling Pathway

    Get PDF
    Current knowledge about Periostin biology has expanded from its recognized functions in embryogenesis and bone metabolism to its roles in tissue repair and remodeling and its clinical implications in cancer. Emerging evidence suggests that Periostin plays a critical role in the mechanism of wound healing; however, the paracrine effect of Periostin in epithelial cell biology is still poorly understood. We found that epithelial cells are capable of producing endogenous Periostin that, unlike mesenchymal cell, cannot be secreted. Epithelial cells responded to Periostin paracrine stimuli by enhancing cellular migration and proliferation and by activating the mTOR signaling pathway. Interestingly, biomechanical stimulation of epithelial cells, which simulates tension forces that occur during initial steps of tissue healing, induced Periostin production and mTOR activation. The molecular association of Periostin and mTOR signaling was further dissected by administering rapamycin, a selective pharmacological inhibitor of mTOR, and by disruption of Raptor and Rictor scaffold proteins implicated in the regulation of mTORC1 and mTORC2 complex assembly. Both strategies resulted in ablation of Periostin-induced mitogenic and migratory activity. These results indicate that Periostin-induced epithelial migration and proliferation requires mTOR signaling. Collectively, our findings identify Periostin as a mechanical stress responsive molecule that is primarily secreted by fibroblasts during wound healing and expressed endogenously in epithelial cells resulting in the control of cellular physiology through a mechanism mediated by the mTOR signaling cascade.This work was funded by the National Institutes of Health (NIH/NCI) P50-CA97248 (University of Michigan Head and Neck SPORE)

    Sex Bias in Pathogenesis of Autoimmune Neuroinflammation: Relevance for Dimethyl Fumarate Immunomodulatory/Anti-oxidant Action

    Get PDF
    In the present study, upon showing sexual dimorphism in dimethyl fumarate (DMF) efficacy to moderate the clinical severity of experimental autoimmune encephalomyelitis (EAE) in Dark Agouti rats, cellular and molecular substrate of this dimorphism was explored. In rats of both sexes, DMF administration from the day of immunization attenuated EAE severity, but this effect was more prominent in males leading to loss of the sexual dimorphism observed in vehicle-administered controls. Consistently, in male rats, DMF was more efficient in diminishing the number of CD4+ T lymphocytes infiltrating spinal cord (SC) and their reactivation, the number of IL-17+ T lymphocytes and particularly cellularity of their highly pathogenic IFN-gamma+GM-CSF+IL-17+ subset. This was linked with changes in SC CD11b+CD45+TCR alpha beta- microglia/proinflammatory monocyte progeny, substantiated in a more prominent increase in the frequency of anti-inflammatory phygocyting CD163+ cells and the cells expressing high surface levels of immunoregulatory CD83 molecule (associated with apoptotic cells phagocytosis and implicated in downregulation of CD4+ T lymphocyte reactivation) among CD11b+CD45+TCR alpha beta- cells in male rat SC. These changes were associated with greater increase in the nuclear factor (erythroid-derived 2)-like 2 expression in male rats administered with DMF. In accordance with the previous findings, DMF diminished reactive nitrogen and oxygen species generation and consistently, SC level of advanced oxidation protein products, to the greater extent in male rats. Overall, our study indicates sex-specificity in the sensitivity of DMF cellular and molecular targets and encourages sex-based clinical research to define significance of sex for action of therapeutic agents moderating autoimmune neuroinflammation-/oxidative stress-related nervous tissue damage

    Fe-Traps Influence on Time-dependent Breakdown Voltage in 0.1-μm GaN HEMTs for 5G Applications

    No full text
    Scaled (LG = 0.1 μm) GaN HEMT technology is currently pursued for high-frequency applications (such as 5G), requiring high current/speed and blocking capability. However, traps introduced with intentional Fe doping yield time-dependent breakdown voltage (VBR), seriously affecting reliability. Here, we investigate the role of Fe traps by pulsed I-V characterization performed at different pulse durations (TOFF). A TOFF-dependent VBR is observed on tested devices and is ascribed to the time-dependent occupancy of deep acceptors in the buffer layer. More specifically, the decrease in VBR for short pulses is attributed to the increased leakage due to the reduced ionization of Fe-traps. This interpretation is supported by 2D numerical simulations

    Two-dimensional MoS2 negative capacitor transistors for enhanced (super-Nernstian) signal-to-noise performance of next-generation nano biosensors

    No full text
    The detection of biomolecules by a Field Effect Transistor-based biosensor (BioFET) is dictated by the sensor's intrinsic Signal-to-Noise Ratio (SNR). The detection limit of a traditional BioFET is fundamentally limited by biomolecule diffusion, charge screening, linear charge to surface-potential transduction, and Flicker noise. In this letter, we show that the recently introduced class of transistors called negative capacitor field effect transistors offers nonlinear charge transduction and suppression of Flicker noise to dramatically improve the SNR over classical Boltzmann sensors. We quantify the SNR improvement (approximately two orders of magnitude higher than a classical Si-nanowire biosensor) by interpreting the experimental results associated with the signal and noise characteristics of 2D MoS2-based transistors. The proposed Negative Capacitor BioFET (NC-BioFET) will motivate experimentalists to combine two well-established technologies to achieve high SNR (and to improve the detection limit), fundamentally unachievable by any other sensor technology

    Natural history of hepatitis B virus infection and disease

    No full text
    The natural history of hepatitis B virus (HBV) infection is complex and variable and is greatly influenced by the age at infection \u2013the younger the age the higher the probability of chronicity\u2013 the level of HBV replication and host immune status. Chronic hepatitis B is usually characterized by an early replicative phase with hepatitis B e antigen (HBeAg)positivity, high serum HBV-DNA levels (> 105 copies/ml) and normal serum alanine aminotransferase (ALT) (HBeAg-positive chronic hepatitis in the \u201cimmunotolerant\u201d phase) or raised serum ALT and active hepatitis (HBeAg-positive chronic hepatitis in the \u201cimmunoactive\u201d phase) and a late inactive phase with HBeAg seroconversion, low or undetectable serum HBV-DNA, and liver disease remission (inactive carrier state). Another form of chronic hepatitis B is characterized by HBeAg negativity, detectable serum HBV-DNA levels (suggested threshold > 104 copies/ml) and active hepatitis due to HBV variants not expressing HBeAg (HBeAg-negative chronic hepatitis). HBeAg-negative chronic hepatitis represents a late phase of chronic HBV infection and its prevalence is increasing throughout the world. Chronic hepatitis B is associated with serious complications, including cirrhosis, hepatic decompensation and hepatocellular carcinoma (HCC). The incidence of cirrhosis ranges from 0.5 per 100 person years in HBeAg-positive chronic hepatitis in the immunotolerant phase to 2 to 5 per 100 person years in HBeAg-positive chronic hepatitis in the immunoactive phase, but may be as high as 8 to 10 in HBeAg-negative chronic hepatitis. The incidence of HCC appears to vary geographically and increases with the severity of liver disease (0.02 to 1.0 per 100 person years in carriers without cirrhosis at baseline to 2 to 3 per 100 person years in cirrhotic patients). The five-year mortality rate is about 15% for patients with compensated cirrhosis and 65% to 85% following decompensation. HCC and liver failure are the main causes of death. Viral-related factors (level and persistence of HBV replication, emergence of viral mutants, HBV genotype, viral coinfections), host-related factors (sex, age at infection, age at diagnosis, stage of liver disease at presentation, recurrent hepatitis flares, sustained aminotransferase normalization), and environmental factors (alcohol abuse, smoking and dietary carcinogens) may all be important determinants of the outcome of the diseas

    The incorporation of xenon at point defects and bubbles in uranium mononitride

    No full text
    Uranium mononitride (UN) has been proposed as an accident tolerant fuel for nuclear fission reactors and offers enhanced performance during accident scenarios relative to the current fuel, uranium dioxide. However, its performance in reactor is significantly less well understood than for the oxide. Therefore, this work explores incorporation of Xe into UN using density functional theory to understand the early stages of fission gas evolution. These results are used to derive a new potential for Xe in UN, which is then employed to simulate the growth of xenon bubbles in spherical voids of various sizes at 300 K and 1200 K. At sufficiently high gas densities, the xenon was found to mainly crystallise in an fcc arrangement. Loop punching was observed at 10.2 GPa and above for larger bubbles of 4.8 nm radius, significantly so for higher temperatures. This work suggests that no Xe undergoes thermal resolution at temperatures up to 1200 K and that the UN lattice prefers to undergo deformation instead
    corecore