14 research outputs found

    Targeting AgRP neurons to maintain energy balance: lessons from animal models

    Get PDF
    The current obesity epidemic is a major worldwide health and economic burden. In the modern environment, an increase in the intake of high-fat and high-sugar foods plays a crucial role in the development of obesity by disrupting the mechanisms governing food intake and energy balance. Food intake and whole-body energy balance are regulated by the central nervous system through a sophisticated neuronal network located mostly in the hypothalamus. In particular, the hypothalamic arcuate nucleus (ARC) is a fundamental center that senses hormonal and nutrient-related signals informing about the energy state of the organism. The ARC contains two small, defined populations of neurons with opposite functions: anorexigenic proopiomelanocortin (POMC)-expressing neurons and orexigenic Agouti-related protein (AgRP)-expressing neurons. AgRP neurons, which also co-produce neuropeptide Y (NPY) and γ-Aminobutyric acid (GABA), are involved in an increase in hunger and a decrease in energy expenditure. In this review, we summarize the key findings from the most common animal models targeting AgRP neurons and the tools used to discern the role of this specific neuronal population in the control of peripheral metabolism, appetite, feeding-related behavior, and other complex behaviors. We also discuss how knowledge gained from these studies has revealed new pathways and key proteins that could be potential therapeutic targets to reduce appetite and food addictions in obesity and other diseases

    New approaches targeting brown adipose tissue transplantation as a therapy in obesity

    Get PDF
    Brown adipose tissue (BAT) is raising high expectations as a potential target in the fight against metabolic disorders such as obesity and type 2 diabetes. BAT utilizes fuels such as fatty acids to maintain body temperature by uncoupling mitochondrial electron transport to produce heat instead of ATP. This process is called thermogenesis. BAT was considered to be exclusive to rodents and human neonates. However, in the last decade several studies have demonstrated that BAT is not only present but also active in adult humans and that its activity is reduced in several pathological conditions, such as aging, obesity, and diabetes. Thus, tremendous efforts are being made by the scientific community to enhance either BAT mass or activity. Several activators of thermogenesis have been described, such as natriuretic peptides, bone morphogenic proteins, or fibroblast growth factor 21. Furthermore, recent studies have tested a therapeutic approach to directly increase BAT mass by the implantation of either adipocytes or fat tissue. This approach might have an important future in regenerative medicine and in the fight against metabolic disorders. Here, we review the emerging field of BAT transplantation including the various sources of mesenchymal stem cell isolation in rodents and humans and the described metabolic outcomes of adipocyte cell transplantation and BAT transplantation in obesity. KEYWORDS: Brown adipose tissue; Obesity; Transplantatio

    High-Intensity Exercise Reduces Cardiac Fibrosis and Hypertrophy but Does Not Restore the Nitroso-Redox Imbalance in Diabetic Cardiomyopathy

    Get PDF
    Diabetic cardiomyopathy refers to the manifestations in the heart as a result of altered glucose homeostasis, reflected as fibrosis, cellular hypertrophy, increased oxidative stress, and apoptosis, leading to ventricular dysfunction. Since physical exercise has been indicated as cardioprotective, we tested the hypothesis that high-intensity exercise training could reverse the cardiac maladaptations produced by diabetes. For this, diabetes was induced in rats by a single dose of alloxan. Diabetic rats were randomly assigned to a sedentary group or submitted to a program of exercise on a treadmill for 4 weeks at 80% of maximal performance. Another group of normoglycemic rats was used as control. Diabetic rat hearts presented cardiomyocyte hypertrophy and interstitial fibrosis. Chronic exercise reduced both parameters but increased apoptosis. Diabetes increased the myocardial levels of the mRNA and proteins of NADPH oxidases NOX2 and NOX4. These altered levels were not reduced by exercise. Diabetes also increased the level of uncoupled endothelial nitric oxide synthase (eNOS) that was not reversed by exercise. Finally, diabetic rats showed a lower degree of phosphorylated phospholamban and reduced levels of SERCA2 that were not restored by high-intensity exercise. These results suggest that high-intensity chronic exercise was able to reverse remodeling in the diabetic heart but was unable to restore the nitroso-redox imbalance imposed by diabetes

    Moderate SIRT1 overexpression protects against brown adipose tissue inflammation

    Get PDF
    Objective: Metainflammation is a chronic low-grade inflammatory state induced by obesity and associated comorbidities, including peripheral insulin resistance. Brown adipose tissue (BAT), a therapeutic target against obesity, is an insulin target tissue sensitive to inflammation. Therefore, it is demanding to find strategies to protect BAT against the effects of inflammation in energy balance. In this study we have explored the impact of moderate Sirtuin 1 (SIRT1) overexpression in insulin sensitivity and β-adrenergic responses in BAT and brown adipocytes (BA) under pro-inflammatory conditions. Methods: The effect of inflammation in BAT functionality was studied in obese db/db mice and lean wild-type (WT) mice or mice with moderate overexpression of SIRT1 (SIRT1Tg+) injected a low dose of bacterial lipopolysaccharide (LPS) to mimic endotoxemia. We also conducted studies in differentiated BA (BA-WT and BA-SIRT1Tg+) exposed to a macrophagederived pro-inflammatory conditioned medium (CM) to evaluate the protection of SIRT1 overexpression in insulin signaling and glucose uptake, mitochondrial respiration, fatty acid oxidation (FAO), as well as norepinephrine (NE)-mediated-modulation of uncoupling protein-1 (UCP-1) expression. Results: BAT from db/db mice was susceptible to metabolic inflammation manifested by activation of pro-inflammatory signaling cascades, increased pro-inflammatory gene expression, tissue-specific insulin resistance and reduced UCP-1 expression. Impairment of insulin and noradrenergic responses were also found in lean WT mice upon LPS injection. By contrast, BAT from mice with moderate overexpression of SIRT1 (SIRT1Tg+) was protected against LPSinduced activation of pro-inflammatory signaling, insulin resistance and defective thermogenicrelated responses upon cold exposure. Importantly, the drop of triiodothyronine (T3) levels both in circulation and intra-BAT after exposure of WT mice to LPS and cold was markedly attenuated in SIRT1Tg+ mice. In vitro experiments in BA from the two genotypes revealed that upon differentiation with a T3-enriched medium and subsequent exposure to a macrophagederived pro-inflammatory CM, only BA-SIRT1Tg+ fully recovered insulin and noradrenergic responses. Conclusion: This study has unraveled the benefit of moderate overexpression of SIRT1 to confer protection against defective insulin and β-adrenergic responses caused by inflammation in BAT. Our results have potential therapeutic value proposing combinatorial therapies of BATspecific thyromimetics and SIRT1 activators to combat metainflammation in this tissue

    Ghrelin causes a decline in GABA release by reducing fatty acid oxidation in cortex

    Get PDF
    Lipid metabolism, specifically fatty acid oxidation (FAO) mediated by carnitine palmitoyltransferase (CPT) 1A, has been described to be an important actor of ghrelin action in hypothalamus. However, it is not known whether CPT1A and FAO mediate the effect of ghrelin on the cortex. Here, we show that ghrelin produces a differential effect on CPT1 activity and γ-aminobutyric acid (GABA) metabolism in the hypothalamus and cortex of mice. In the hypothalamus, ghrelin enhances CPT1A activity while GABA transaminase (GABAT) activity, a key enzyme in GABA shunt metabolism, is unaltered. However, in cortex CPT1A activity and GABAT activity are reduced after ghrelin treatment. Furthermore, in primary cortical neurons, ghrelin reduces GABA release through a CPT1A reduction. By using CPT1A floxed mice, we have observed that genetic ablation of CPT1A recapitulates the effect of ghrelin on GABA release in cortical neurons, inducing reductions in mitochondrial oxygen consumption, cell content of citrate and α-ketoglutarate, and GABA shunt enzyme activity. Taken together, these observations indicate that ghrelin-induced changes in CPT1A activity modulate mitochondrial function, yielding changes in GABA metabolism. This evidence suggests that the action of ghrelin on GABA release is region specific within the brain, providing a basis for differential effects of ghrelin in the central nervous system. Keywords: Ghrelin, GABA, Fatty acid oxidation, CPT1A, Cortical neuron

    Implantation of CPT1AM-expressing adipocytes reduces obesity and glucose intolerance in mice

    Get PDF
    Obesity and its associated metabolic comorbidities are a rising global health and social issue, with novel therapeutic approaches urgently needed. Adipose tissue plays a key role in the regulation of energy balance and adipose tissue-derived mesenchymal stem cells (AT-MSCs) have gained great interest in cell therapy. Carnitine palmitoyltransferase 1A (CPT1A) is the gatekeeper enzyme for mitochondrial fatty acid oxidation. Here, we aimed to generate adipocytes expressing a constitutively active CPT1A form (CPT1AM) that can improve the obese phenotype in mice after their implantation. AT-MSCs were differentiated into mature adipocytes, subjected to lentivirus-mediated expression of CPT1AM or the GFP control, and subcutaneously implanted into mice fed a high-fat diet (HFD). CPT1AM-implanted mice showed lower body weight, hepatic steatosis and serum insulin and cholesterol levels alongside improved glucose tolerance. HFD-induced increases in adipose tissue hypertrophy, fibrosis, inflammation, endoplasmic reticulum stress and apoptosis were reduced in CPT1AM-implanted mice. In addition, the expression of mitochondrial respiratory chain complexes was enhanced in the adipose tissue of CPT1AM-implanted mice. Our results demonstrate that implantation of CPT1AM-expressing AT-MSC-derived adipocytes into HFD-fed mice improves the obese metabolic phenotype, supporting the future clinical use of this ex vivo gene therapy approach

    Targeting AgRP neurons to maintain energy balance: lessons from animal models

    No full text
    The current obesity epidemic is a major worldwide health and economic burden. In the modern environment, an increase in the intake of high-fat and high-sugar foods plays a crucial role in the development of obesity by disrupting the mechanisms governing food intake and energy balance. Food intake and whole-body energy balance are regulated by the central nervous system through a sophisticated neuronal network located mostly in the hypothalamus. In particular, the hypothalamic arcuate nucleus (ARC) is a fundamental center that senses hormonal and nutrient-related signals informing about the energy state of the organism. The ARC contains two small, defined populations of neurons with opposite functions: anorexigenic proopiomelanocortin (POMC)-expressing neurons and orexigenic Agouti-related protein (AgRP)-expressing neurons. AgRP neurons, which also co-produce neuropeptide Y (NPY) and γ-Aminobutyric acid (GABA), are involved in an increase in hunger and a decrease in energy expenditure. In this review, we summarize the key findings from the most common animal models targeting AgRP neurons and the tools used to discern the role of this specific neuronal population in the control of peripheral metabolism, appetite, feeding-related behavior, and other complex behaviors. We also discuss how knowledge gained from these studies has revealed new pathways and key proteins that could be potential therapeutic targets to reduce appetite and food addictions in obesity and other diseases

    New approaches targeting brown adipose tissue transplantation as a therapy in obesity

    No full text
    Brown adipose tissue (BAT) is raising high expectations as a potential target in the fight against metabolic disorders such as obesity and type 2 diabetes. BAT utilizes fuels such as fatty acids to maintain body temperature by uncoupling mitochondrial electron transport to produce heat instead of ATP. This process is called thermogenesis. BAT was considered to be exclusive to rodents and human neonates. However, in the last decade several studies have demonstrated that BAT is not only present but also active in adult humans and that its activity is reduced in several pathological conditions, such as aging, obesity, and diabetes. Thus, tremendous efforts are being made by the scientific community to enhance either BAT mass or activity. Several activators of thermogenesis have been described, such as natriuretic peptides, bone morphogenic proteins, or fibroblast growth factor 21. Furthermore, recent studies have tested a therapeutic approach to directly increase BAT mass by the implantation of either adipocytes or fat tissue. This approach might have an important future in regenerative medicine and in the fight against metabolic disorders. Here, we review the emerging field of BAT transplantation including the various sources of mesenchymal stem cell isolation in rodents and humans and the described metabolic outcomes of adipocyte cell transplantation and BAT transplantation in obesity. KEYWORDS: Brown adipose tissue; Obesity; Transplantatio

    Impact of adaptive thermogenesis in mice on the treatment of obesity

    Get PDF
    Obesity and associated metabolic diseases have become a priority area of study due to the exponential increase in their prevalence and the corresponding health and economic impact. In the last decade, brown adipose tissue has become an attractive target to treat obesity. However, environmental variables such as temperature and the dynamics of energy expenditure could influence brown adipose tissue activity. Currently, most metabolic studies are carried out at a room temperature of 21ºC, which is considered a thermoneutral zone for adult humans. However, in mice this chronic cold temperature triggers an increase in their adaptive thermogenesis. In this review, we aim to cover important aspects related to the adaptation of animals to room temperature, the influence of housing and temperature on the development of metabolic phenotypes in experimental mice and their translation to human physiology. Mice studies performed in chronic cold or thermoneutral conditions allow us to better understand underlying physiological mechanisms for successful, reproducible translation into humans in the fight against obesity and metabolic diseases

    To be or not to be a fat burner, that is the question for cpt1c in cancer cells

    Get PDF
    There is an urgent need to identify reliable genetic biomarkers for accurate diagnosis, prognosis, and treatment of different tumor types. Described as a prognostic marker for many tumors is the neuronal protein carnitine palmitoyltransferase 1 C (CPT1C). Several studies report that CPT1C is involved in cancer cell adaptation to nutrient depletion and hypoxia. However, the molecular role played by CPT1C in cancer cells is controversial. Most published studies assume that, like canonical CPT1 isoforms, CPT1C is a mediator of fatty acid transport to mitochondria for beta-oxidation, despite the fact that CPT1C has inefficient catalytic activity and is located in the endoplasmic reticulum. In this review, we collate existing evidence on CPT1C in neurons, showing that CPT1C is a sensor of nutrients that interacts with and regulates other proteins involved in lipid metabolism and transport, lysosome motility, and the secretory pathway. We argue, therefore, that CPT1C expression in cancer cells is not a direct regulator of fat burn, but rather is a regulator of lipid metabolic reprograming and cell adaptation to environmental stressors. We also review the clinical relevance of CPT1C as a prognostic indicator and its contribution to tumor growth, cancer invasiveness, and cell senescence. This new and integrated vision of CPT1C function can help better understand the metabolic plasticity of cancer cells and improve the design of therapeutic strategies
    corecore