3,402 research outputs found

    The Dirac point electron in zero-gravity Kerr--Newman spacetime

    Full text link
    Dirac's wave equation for a point electron in the topologically nontrivial maximal analytically extended electromagnetic Kerr--Newman spacetime is studied in a zero-gravity limit; here, "zero-gravity" means G→0G\to 0, where GG is Newton's constant of universal gravitation. The following results are obtained: the formal Dirac Hamiltonian on the static spacelike slices is essentially self-adjoint; the spectrum of the self-adjoint extension is symmetric about zero, featuring a continuum with a gap about zero that, under two smallness conditions, contains a point spectrum. Some of our results extend to a generalization of the zero-GG Kerr--Newman spacetime with different electric-monopole-to-magnetic-dipole-moment ratio.Comment: 49 pages, 17 figures; referee's comments implemented; the endnotes in the published version appear as footnotes in this preprin

    UV-induced wettability change of teflon-modified ZnO nanorod arrays on LiNbO3 substrate

    Get PDF
    Aligned ZnO nanorod arrays films were grown on LiNbO3 substrates by aqueous growth, and subsequently rendered superhydrophobic with RF sputtered coated Teflon. The as-prepared surface exhibits superhydrophobicity with a water contact angle (CA) of 154.5deg. After 2 hours of UV irradiation on the surface, the surface wettability was approaching hydrophilic state; CA was measured to be 113deg. This study provides insights into the methodology of a low cost, efficient technique that has great potential for preparing nanostructured surface with tunable wettability

    Quantification of temporal fault trees based on fuzzy set theory

    Get PDF
    © Springer International Publishing Switzerland 2014. Fault tree analysis (FTA) has been modified in different ways to make it capable of performing quantitative and qualitative safety analysis with temporal gates, thereby overcoming its limitation in capturing sequential failure behaviour. However, for many systems, it is often very difficult to have exact failure rates of components due to increased complexity of systems, scarcity of necessary statistical data etc. To overcome this problem, this paper presents a methodology based on fuzzy set theory to quantify temporal fault trees. This makes the imprecision in available failure data more explicit and helps to obtain a range of most probable values for the top event probability

    An Inverse Compton Scattering Origin of X-ray Flares from Sgr A*

    Full text link
    The X-ray and near-IR emission from Sgr A* is dominated by flaring, while a quiescent component dominates the emission at radio and sub-mm wavelengths. The spectral energy distribution of the quiescent emission from Sgr A* peaks at sub-mm wavelengths and is modeled as synchrotron radiation from a thermal population of electrons in the accretion flow, with electron temperatures ranging up to ∼5−20\sim 5-20\,MeV. Here we investigate the mechanism by which X-ray flare emission is produced through the interaction of the quiescent and flaring components of Sgr A*. The X-ray flare emission has been interpreted as inverse Compton, self-synchrotron-Compton, or synchrotron emission. We present results of simultaneous X-ray and near-IR observations and show evidence that X-ray peak flare emission lags behind near-IR flare emission with a time delay ranging from a few to tens of minutes. Our Inverse Compton scattering modeling places constraints on the electron density and temperature distributions of the accretion flow and on the locations where flares are produced. In the context of this model, the strong X-ray counterparts to near-IR flares arising from the inner disk should show no significant time delay, whereas near-IR flares in the outer disk should show a broadened and delayed X-ray flare.Comment: 22 pages, 6 figures, 2 tables, AJ (in press
    • …
    corecore