6,222 research outputs found

    The Dirac point electron in zero-gravity Kerr--Newman spacetime

    Full text link
    Dirac's wave equation for a point electron in the topologically nontrivial maximal analytically extended electromagnetic Kerr--Newman spacetime is studied in a zero-gravity limit; here, "zero-gravity" means G0G\to 0, where GG is Newton's constant of universal gravitation. The following results are obtained: the formal Dirac Hamiltonian on the static spacelike slices is essentially self-adjoint; the spectrum of the self-adjoint extension is symmetric about zero, featuring a continuum with a gap about zero that, under two smallness conditions, contains a point spectrum. Some of our results extend to a generalization of the zero-GG Kerr--Newman spacetime with different electric-monopole-to-magnetic-dipole-moment ratio.Comment: 49 pages, 17 figures; referee's comments implemented; the endnotes in the published version appear as footnotes in this preprin

    A Note on Tsallis Holographic Dark Energy

    Full text link
    We explore the effects of considering various infrared (IR) cutoffs, including the particle horizon, Ricci horizon and Granda-Oliveros (GO) cutoffs, on the properties of Tsallis holographic dark energy (THDE) model, proposed inspired by Tsallis generalized entropy formalism \cite{THDE}. Interestingly enough, we find that for the particle horizon as IR cutoff, the obtained THDE model can describe the accelerated universe. This is in contrast to the usual HDE model which cannot lead to an accelerated universe, if one consider the particle horizon as IR cutoff. We also investigate the cosmological consequences of THDE under the assumption of a mutual interaction between the dark sectors of the Universe. It is shown that the evolution history of the Universe can be described by these IR cutoffs and thus the current cosmic acceleration can also been realized. The sound instability of THDE models for each cutoff are also explored, separately.Comment: 12 pages, 31 figure

    The Variability of Polarized Radiation from Sgr A*

    Full text link
    Sgr A* is variable at radio and submillimeter wavelengths on hourly time scales showing time delays between the peaks of flare emission as well as linearly polarized emission at millimeter and sub-mm wavelengths. To determine the polarization characteristics of this variable source at radio frequencies, we present VLA observations of Sgr A* and report the detection of polarized emission at a level of 0.77\pm0.01% and 0.2\pm0.01% at 43 and 22 GHz, respectively. The change in the time averaged polarization angle between 22 and 43 GHz corresponds to a RM of -2.5\pm0.6 x10^3 rad m{-2} with no phase wrapping (or \sim 5x10^4 rad m^2 with 2\pi phase wrap). We also note a rise and fall time scale of 1.5 -- 2 hours in the total polarized intensity. The light curves of the degree of linearly polarized emission suggests a a correlation with the variability of the total intensity at 43 GHz. The available polarization data at radio and sub-mm wavelengths suggest that the rotation measure decreases with decreasing frequency. This frequency dependence, and observed changes in polarization angle during flare events, may be caused by the reduction in rotation measure associated with the expansion of synchrotron-emitting blobs.Comment: 11 pages, 3 figures, ApJL (in press

    An Inverse Compton Scattering Origin of X-ray Flares from Sgr A*

    Full text link
    The X-ray and near-IR emission from Sgr A* is dominated by flaring, while a quiescent component dominates the emission at radio and sub-mm wavelengths. The spectral energy distribution of the quiescent emission from Sgr A* peaks at sub-mm wavelengths and is modeled as synchrotron radiation from a thermal population of electrons in the accretion flow, with electron temperatures ranging up to 520\sim 5-20\,MeV. Here we investigate the mechanism by which X-ray flare emission is produced through the interaction of the quiescent and flaring components of Sgr A*. The X-ray flare emission has been interpreted as inverse Compton, self-synchrotron-Compton, or synchrotron emission. We present results of simultaneous X-ray and near-IR observations and show evidence that X-ray peak flare emission lags behind near-IR flare emission with a time delay ranging from a few to tens of minutes. Our Inverse Compton scattering modeling places constraints on the electron density and temperature distributions of the accretion flow and on the locations where flares are produced. In the context of this model, the strong X-ray counterparts to near-IR flares arising from the inner disk should show no significant time delay, whereas near-IR flares in the outer disk should show a broadened and delayed X-ray flare.Comment: 22 pages, 6 figures, 2 tables, AJ (in press
    corecore