118 research outputs found

    Author Correction: Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases

    Get PDF
    Emmanuelle Souzeau, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this Article. This has now been corrected in both the PDF and HTML versions of the Article

    Fe-Mg interdiffusion rates in clinopyroxene: Experimental data and implications for Fe-Mg exchange geothermometers

    Get PDF
    Chemical interdiffusion of Fe-Mg along the c-axis [001] in natural diopside crystals (XDi = 0.93) was experimentally studied at ambient pressure, at temperatures ranging from 800 to 1,200 °C and oxygen fugacities from 10-11 to 10-17 bar. Diffusion couples were prepared by ablating an olivine (XFo = 0.3) target to deposit a thin film (20-100 nm) onto a polished surface of a natural, oriented diopside crystal using the pulsed laser deposition technique. After diffusion anneals, compositional depth profiles at the near surface region (~400 nm) were measured using Rutherford backscattering spectroscopy. In the experimental temperature and compositional range, no strong dependence of DFe-Mg on composition of clinopyroxene (Fe/Mg ratio between Di93-Di65) or oxygen fugacity could be detected within the resolution of the study. The lack of fO2-dependence may be related to the relatively high Al content of the crystals used in this study. Diffusion coefficients, DFe-Mg, can be described by a single Arrhenius relation with (Formula presented). DFe-Mg in clinopyroxene appears to be faster than diffusion involving Ca-species (e.g., DCa-Mg) while it is slower than DFe-Mg in other common mafic minerals (spinel, olivine, garnet, and orthopyroxene). As a consequence, diffusion in clinopyroxene may be the rate-limiting process for the freezing of many geothermometers, and compositional zoning in clinopyroxene may preserve records of a higher (compared to that preserved in other coexisting mafic minerals) temperature segment of the thermal history of a rock. In the absence of pervasive recrystallization, clinopyroxene grains will retain compositions from peak temperatures at their cores in most geological and planetary settings where peak temperatures did not exceed ~1,100 °C (e.g., resetting may be expected in slowly cooled mantle rocks, many plutonic mafic rocks, or ultra-high temperature metamorphic rocks)

    Genomic diversity of bacteriophages infecting Microbacterium spp

    Get PDF
    The bacteriophage population is vast, dynamic, old, and genetically diverse. The genomics of phages that infect bacterial hosts in the phylum Actinobacteria show them to not only be diverse but also pervasively mosaic, and replete with genes of unknown function. To further explore this broad group of bacteriophages, we describe here the isolation and genomic characterization of 116 phages that infect Microbacterium spp. Most of the phages are lytic, and can be grouped into twelve clusters according to their overall relatedness; seven of the phages are singletons with no close relatives. Genome sizes vary from 17.3 kbp to 97.7 kbp, and their G+C% content ranges from 51.4% to 71.4%, compared to ~67% for their Microbacterium hosts. The phages were isolated on five different Microbacterium species, but typically do not efficiently infect strains beyond the one on which they were isolated. These Microbacterium phages contain many novel features, including very large viral genes (13.5 kbp) and unusual fusions of structural proteins, including a fusion of VIP2 toxin and a MuF-like protein into a single gene. These phages and their genetic components such as integration systems, recombineering tools, and phage-mediated delivery systems, will be useful resources for advancing Microbacterium genetics

    Workflow Management for Cross-Media Publishing

    No full text

    Is There Any Implicit Knowledge Management Within Software Processes?

    No full text
    corecore