114 research outputs found

    Effects of larval growth condition and water availability on desiccation resistance and its physiological basis in adult Anopheles gambiae sensu stricto

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Natural populations of the malaria mosquito <it>Anopheles gambiae </it>s.s. are exposed to large seasonal and daily fluctuations in relative humidity and temperature, which makes coping with drought a crucial aspect of their ecology.</p> <p>Methods</p> <p>To better understand natural variation in desiccation resistance in this species, the effects of variation in larval food availability and access to water as an adult on subsequent phenotypic quality and desiccation resistance of adult females of the Mopti chromosomal form were tested experimentally.</p> <p>Results</p> <p>It was found that, under normal conditions, larval food availability and adult access to water had only small direct effects on female wet mass, dry mass, and water, glycogen and body lipid contents corrected for body size. In contrast, when females subsequently faced a strong desiccation challenge, larval food availability and adult access to water had strong carry-over effects on most measured physiological and metabolic parameters, and affected female survival. Glycogen and water content were the most used physiological reserves in relative terms, but their usage significantly depended on female phenotypic quality. Adult access to water significantly influenced the use of water and body lipid reserves, which subsequently affected desiccation resistance.</p> <p>Conclusions</p> <p>These results demonstrate the importance of growth conditions and water availability on adult physiological status and subsequent resistance to desiccation.</p

    Parallel molecular routes to cold adaptation in eight genera of New Zealand stick insects.

    Get PDF
    The acquisition of physiological strategies to tolerate novel thermal conditions allows organisms to exploit new environments. As a result, thermal tolerance is a key determinant of the global distribution of biodiversity, yet the constraints on its evolution are not well understood. Here we investigate parallel evolution of cold tolerance in New Zealand stick insects, an endemic radiation containing three montane-occurring species. Using a phylogeny constructed from 274 orthologous genes, we show that stick insects have independently colonized montane environments at least twice. We compare supercooling point and survival of internal ice formation among ten species from eight genera, and identify both freeze tolerance and freeze avoidance in separate montane lineages. Freeze tolerance is also verified in both lowland and montane populations of a single, geographically widespread, species. Transcriptome sequencing following cold shock identifies a set of structural cuticular genes that are both differentially regulated and under positive sequence selection in each species. However, while cuticular proteins in general are associated with cold shock across the phylogeny, the specific genes at play differ among species. Thus, while processes related to cuticular structure are consistently associated with adaptation for cold, this may not be the consequence of shared ancestral genetic constraints

    In Vivo Assessment of Cold Adaptation in Insect Larvae by Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy

    Get PDF
    Background Temperatures below the freezing point of water and the ensuing ice crystal formation pose serious challenges to cell structure and function. Consequently, species living in seasonally cold environments have evolved a multitude of strategies to reorganize their cellular architecture and metabolism, and the underlying mechanisms are crucial to our understanding of life. In multicellular organisms, and poikilotherm animals in particular, our knowledge about these processes is almost exclusively due to invasive studies, thereby limiting the range of conclusions that can be drawn about intact living systems. Methodology Given that non-destructive techniques like 1H Magnetic Resonance (MR) imaging and spectroscopy have proven useful for in vivo investigations of a wide range of biological systems, we aimed at evaluating their potential to observe cold adaptations in living insect larvae. Specifically, we chose two cold-hardy insect species that frequently serve as cryobiological model systems–the freeze-avoiding gall moth Epiblema scudderiana and the freeze-tolerant gall fly Eurosta solidaginis. Results In vivo MR images were acquired from autumn-collected larvae at temperatures between 0°C and about -70°C and at spatial resolutions down to 27 µm. These images revealed three-dimensional (3D) larval anatomy at a level of detail currently not in reach of other in vivo techniques. Furthermore, they allowed visualization of the 3D distribution of the remaining liquid water and of the endogenous cryoprotectants at subzero temperatures, and temperature-weighted images of these distributions could be derived. Finally, individual fat body cells and their nuclei could be identified in intact frozen Eurosta larvae. Conclusions These findings suggest that high resolution MR techniques provide for interesting methodological options in comparative cryobiological investigations, especially in vivo
    corecore