684 research outputs found

    The Crystal Structure of the Extracellular 11-heme Cytochrome UndA Reveals a Conserved 10-heme Motif and Defined Binding Site for Soluble Iron Chelates

    Get PDF
    Members of the genus Shewanella translocate deca- or undeca-heme cytochromes to the external cell surface thus enabling respiration using extracellular minerals and polynuclear Fe(III) chelates. The high resolution structure of the first undeca-heme outer membrane cytochrome, UndA, reveals a crossed heme chain with four potential electron ingress/egress sites arranged within four domains. Sequence and structural alignment of UndA and the deca-heme MtrF reveals the extra heme of UndA is inserted between MtrF hemes 6 and 7. The remaining UndA hemes can be superposed over the heme chain of the decaheme MtrF, suggesting that a ten heme core is conserved between outer membrane cytochromes. The UndA structure has also been crystallographically resolved in complex with substrates, an Fe(III)-nitrilotriacetate dimer or an Fe(III)-citrate trimer. The structural resolution of these UndA-Fe(III)-chelate complexes provides a rationale for previous kinetic measurements on UndA and other outer membrane cytochromes

    The Geochemistry of Technetium: A Summary of the Behavior of an Artificial Element in the Natural Environment

    Get PDF
    Interest in the chemistry of technetium has only increased since its discovery in 1937, mainly because of the large and growing inventory of 99Tc generated during fission of 235U, its environmental mobility in oxidizing conditions, and its potential radiotoxicity. For every ton of enriched uranium fuel (3% 235U) that is consumed at a typical burn-up rate, nearly 1 kg of 99Tc is generated. Thus, the mass of 99Tc produced since 1993 has nearly quadrupled, and will likely to continue to increase if more emphasis is placed on nuclear power to slow the accumulation of atmospheric greenhouse gases. In order to gain a comprehensive understanding of the interaction of 99Tc and the natural environment, we review the sources of 99Tc in the nuclear fuel cycle, its chemical properties, radiochemistry, and biogeochemical behavior. We include an evaluation of the use of Re as a chemical analog of Tc, as well as a summary of the redox potential, thermodynamics, sorption, colloidal behavior, and interaction of humic substances with Tc, and the potential for re-oxidation and remobilization of Tc(IV). What emerges is a more complicated picture of Tc behavior than that of an easily tractable transition of Tc(VII) to Tc(IV) with consequent immobilization. Reducing conditions (+200 to +100 mV Eh) are generally thought necessary to cause reduction of Tc(VII) to Tc(IV), but far more important are the presence of reducing agents, such as Fe(II) sorbed onto mineral grains. Catalysis of Tc(VII) by surface-mediated Fe(II) will bring the mobile Tc(VII) species to a lower oxidation state and will form the relatively insoluble Tc(IV)O2∙nH2O, but even as a solid, equilibrium concentrations of aqueous Tc are nearly a factor of 20× above the EPA set drinking water standards. However, sequestration of Tc(IV) into Fe(III)-bearing phases, such as goethite or other hydrous oxyhydroxides of iron, may ameliorate concerns over the mobility of Tc. Further, the outcome of many studies on terrestrial and marine sediments that are oxidizing overall indicate that Tc is relatively immobile, due to formation of oxygen-depleted microenvironments that develop in response to bacteriological activities. The rate of re-mobilization of Tc from these microenvironments is just beginning to be assessed, but with no firm consensus. Reassessment of the simple models in which Tc is mobilized and immobilized is therefore urged

    Kemod: A Mixed Chemical Kinetic And Equilibrium Model of Aqueous and Solid Phase Geochemical Reactions

    Get PDF
    This report presents the development of a mixed chemical Kinetic and Equilibrium MODel (KEMOD), in which every chemical species can be treated either as a equilibrium-controlled or as a kinetically controlled reaction. The reaction processes include aqueous complexation, adsorption/ desorption, ion exchange, precipitation/dissolution, oxidation/reduction, and acid/base reactions. Further development and modification of KEMOD can be made in: (1) inclusion of species switching solution algorithms, (2) incorporation of the effect of temperature and pressure on equilibrium and rate constants, and (3) extension to high ionic strength

    Pore-Scale Characterization of Biogeochemical Controls on Iron and Uranium Speciation under Flow Conditions

    Get PDF
    Etched silicon microfluidic pore network models (micromodels) with controlled chemical and redox gradients, mineralogy, and microbiology under continuous flow conditions are used for the incremental development of complex microenvironments that simulate subsurface conditions. We demonstrate the colonization of micromodel pore spaces by an anaerobic Fe(III)-reducing bacterial species (Geobacter sulfurreducens) and the enzymatic reduction of a bioavailable Fe(III) phase within this environment. Using both Xray microprobe and X-ray absorption spectroscopy, we investigate the combined effects of the precipitated Fe(III) phases and the microbial population on uranium biogeochemistry under flow conditions. Precipitated Fe(III) phases within the micromodel were most effectively reduced in the presence of an electron shuttle (AQDS), and Fe(II) ions adsorbed onto the precipitated mineral surface without inducing any structural change. In the absence of Fe(III), U(VI) was effectively reduced by the microbial population to insoluble U(IV), which was precipitated in discrete regions associated with biomass. In the presence of Fe(III) phases, however, both U(IV) and U(VI) could be detected associated with biomass, suggesting reoxidation of U(IV) by localized Fe(III) phases. These results demonstrate the importance of the spatial localization of biomass and redox active metals, and illustrate the key effects of pore-scale processes on contaminant fate and reactive transport

    Structure of a bacterial cell surface decaheme electron conduit

    Get PDF
    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular intercytochrome electron exchange along “nanowire” appendages. We present a 3.2-Å crystal structure of one of these decaheme cytochromes, MtrF, that allows the spatial organization of the 10 hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65-Å octaheme chain transects the length of the protein and is bisected by a planar 45-Å tetraheme chain that connects two extended Greek key split ß-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g., minerals), soluble substrates (e.g., flavins), and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface

    Review-Development of Huckel Type Anions: From Molecular Modeling to Industrial Commercialization. A Success Story

    Get PDF
    This paper reviews the battery electrolyte technologies involving Huckel-type salts as a major electrolyte component. The concept was initially proposed by M. Armand in 1995 and then explored by several research groups. In the present review studies on the optimization of the electrolyte composition starting from molecular modeling through enhancing the yield of the salt synthesis to structural characterization and electrochemical performance are described. Furthermore, the use of the optimized electrolytes in a variety of lithium-ion and post-lithium batteries is presented and discussed. Finally, the commercialization of the up to date technology by Arkema is discussed as well as the performance of the present Huckel anion based electrolytes as compared to other marketed electrolyte technologies

    Characterization of an electron conduit between bacteria and the extracellular environment

    Get PDF
    A number of species of Gram-negative bacteria can use insoluble minerals of Fe(III) and Mn(IV) as extracellular respiratory electron acceptors. In some species of Shewanella, deca-heme electron transfer proteins lie at the extracellular face of the outer membrane (OM), where they can interact with insoluble substrates. To reduce extracellular substrates, these redox proteins must be charged by the inner membrane/periplasmic electron transfer system. Here, we present a spectro-potentiometric characterization of a trans-OM icosa-heme complex, MtrCAB, and demonstrate its capacity to move electrons across a lipid bilayer after incorporation into proteoliposomes. We also show that a stable MtrAB subcomplex can assemble in the absence of MtrC; an MtrBC subcomplex is not assembled in the absence of MtrA; and MtrA is only associated to the membrane in cells when MtrB is present. We propose a model for the modular organization of the MtrCAB complex in which MtrC is an extracellular element that mediates electron transfer to extracellular substrates and MtrB is a trans-OM spanning ß-barrel protein that serves as a sheath, within which MtrA and MtrC exchange electrons. We have identified the MtrAB module in a range of bacterial phyla, suggesting that it is widely used in electron exchange with the extracellular environment
    corecore