2 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Collaborative Development within a Social Robotic, Multi-Disciplinary Effort: Lesson Learnt from the CARESSES case study

    No full text
    In many cases, complex multidisciplinary research projects may show a lack of coordinated development and integration, and a big effort is often required in the final phase of the projects in order to merge software developed by heterogeneous research groups. This is particularly true in advanced robotic projects: the objective here is to deliver a system that integrates all the hardware and software components, is capable of autonomous behaviour, and needs to be deployed in realworld scenarios toward providing an impact on future research and, ultimately, on society. On the other hand, in recent years there has been a growing interest for techniques related to software integration, but these have been mostly applied to the IT commercial domain. This paper presents the work performed in the context of the project CARESSES, a multidisciplinary research project focusing on socially assistive robotics that involves 9 partners from the EU and Japan. Given the complexity of the project, a huge importance has been placed on software integration, task planning and architecture definition since the first stages of the work: to this aim, some of the practices commonly used in the commercial domain for software integration, such as merging software from the early stage, have been applied. As a case study, the document describes the steps which have been followed in the first year of the project discussing strengths and weaknesses of this approach
    corecore