361 research outputs found

    City of go(l)d : spatial and cultural effects of high-status Jewish immigration from Western countries on the Baka neighbourhood of Jerusalem

    Get PDF
    Immigration to Israel by Jews from western countries has been growing over recent years. Jerusalem attracts more of these mainly religious immigrants than any other city in Israel. They are a desired population by the State of Israel, and for many reasons can be considered privileged immigrants. The way Diaspora Jews imagine Israel and Jerusalem plays a crucial role in their decision to move there. Many of these lifestyle/homecoming immigrants find their way to Baka, where they can live near other expatriates and enjoy the comforts of the ethnic enclave. The paper deals with the spatial and cultural implications that privileged lifestyle migration has on the space in which it settles. It focuses particularly on the case-study of English- and French-speaking Jewish immigrants who live in Baka and on their effects on the neighbourhood’s gentrification process, its real estate market and issues of consumerism and belonging

    Physiological and genetic aspects of a diploid potato population in the Netherlands and Northern Finland

    Get PDF
    Tuberization of potatoes exposed to different photoperiod regimes has been earlier investigated in several studies. However, there is still a limited understanding of the entire tuberization process and the factors influencing this process. One of the constraints of the previous studies has been the use of only one or a few genotypes. Furthermore, the experimental designs have not utilised the natural growing conditions with continuous changes in daylength during the growing season. The general aim of the project was to study the developmental dynamics of the broad-based potato (Solanum tuberosum L.) (CxE) population development at different climatical regimes under the very long-day, long-day and short conditions in Finland, the Netherlands and Ecuador/Venezuela, respectively. In this paper we are presenting some of the results achieved in the studies in Finland during the growing season 2004. In addition to population level trait characteristics we also describe here some of the identified QTLs (quantitative trait loci) for stolon related and tuber formation traits. In some cases we also compare the expression of some of the traits both in Finland and Netherlands.The main difference between the CxE population grown in Finland and the Netherlands was that the onset of flowering took place one week later in Finland. The relationship between tuber initiation and onset of flowering differed depending on the day length. In Finland approximately 70 % of the genotypes had swollen stolon tips before the onset of flowering, while in the Netherlands only 30 % of the genotypes had reached this condition. We also found numerous different trait linked QTLs, for example, a QTL associated with tuber formation was identified on chromosome E5, and QTLs associated with stolon characteristics on chromosomes E1, E4, E10 and E12. As a conclusion, the present preliminary results provide a good basis for determining the influence of different environmental conditions on potato development. In addition, the QTLs obtained in this study give a better understanding of the genetics of complex characters, and can be used in improving the potato crop in breeding programs

    The Swift Surge of Perovskite Photovoltaics

    Get PDF
    The breakthrough early 1990s dye sensitization of mesoscopic TiO2 films along with a regenerative iodide redox couple led to the explosive growth of dye-sensitized solar cell (DSC) research. The pioneering work of GrĂ€tzel and colleagues also made it possible to develop a solid-state DSSC with spiro-oMETAD as the hole conductor and thus replace the liquid electrolyte in the cell. Research efforts of Konenkamp and others further initiated the search for the “extremely thin absorber” (ETA) nanostructured solar cell, using TiO2 as the electron conductor, an inorganic absorber, and a hole conductor. Another major research thrust was by Weller, Kamat, Zaban, Nozik, Hodes, and others, who employed inorganic quantum dots (e.g., CdS and CdSe) as sensitizers. While discussing developments in sensitized solar cells, it is important to note the contributions of early visionaries like Gerischer, Sutin, and Bard, who were first to establish the concepts of sensitization using dye molecules and semiconductor nanostructures

    One-step synthesis of PbSe-ZnSe composite thin film

    Get PDF
    This study investigates the preparation of PbSe-ZnSe composite thin films by simultaneous hot-wall deposition (HWD) from multiple resources. The XRD result reveals that the solubility limit of Pb in ZnSe is quite narrow, less than 1 mol%, with obvious phase-separation in the composite thin films. A nanoscale elemental mapping of the film containing 5 mol% PbSe indicates that isolated PbSe nanocrystals are dispersed in the ZnSe matrix. The optical absorption edge of the composite thin films shifts toward the low-photon-energy region as the PbSe content increases. The use of a phase-separating PbSe-ZnSe system and HWD techniques enables simple production of the composite package

    Low-Cost Flexible Nano-Sulfide/Carbon Composite Counter Electrode for Quantum-Dot-Sensitized Solar Cell

    Get PDF
    Cu2S nanocrystal particles were in situ deposited on graphite paper to prepare nano-sulfide/carbon composite counter electrode for CdS/CdSe quantum-dot-sensitized solar cell (QDSC). By optimization of deposition time, photovoltaic conversion efficiency up to 3.08% was obtained. In the meantime, this composite counter electrode was superior to the commonly used Pt, Au and carbon counter electrodes. Electrochemical impedance spectra further confirmed that low charge transfer resistance at counter electrode/electrolyte interface was responsible for this, implied the potential application of this composite counter electrode in high-efficiency QDSC

    The violent youth of bright and massive cluster galaxies and their maturation over 7 billion years

    Get PDF
    In this study, we investigate the formation and evolution mechanisms of the brightest cluster galaxies (BCGs) over cosmic time. At high redshift (z ∌ 0.9), we selected BCGs and most massive cluster galaxies (MMCGs) from the Cl1604 supercluster and compared them to low-redshift (z ∌ 0.1) counterparts drawn from the MCXC meta-catalogue, supplemented by Sloan Digital Sky Survey imaging and spectroscopy. We observed striking differences in the morphological, colour, spectral, and stellar mass properties of the BCGs/MMCGs in the two samples. High-redshift BCGs/MMCGs were, in many cases, star-forming, late-type galaxies, with blue broad-band colours, properties largely absent amongst the low-redshift BCGs/MMCGs. The stellar mass of BCGs was found to increase by an average factor of 2.51 ± 0.71 from z ∌ 0.9 to z ∌ 0.1. Through this and other comparisons, we conclude that a combination of major merging (mainly wet or mixed) and in situ star formation are the main mechanisms which build stellar mass in BCGs/MMCGs. The stellar mass growth of the BCGs/MMCGs also appears to grow in lockstep with both the stellar baryonic and total mass of the cluster. Additionally, BCGs/MMCGs were found to grow in size, on average, a factor of ∌3, while their average SĂ©rsic index increased by ∌0.45 from z ∌ 0.9 to z ∌ 0.1, also supporting a scenario involving major merging, though some adiabatic expansion is required. These observational results are compared to both models and simulations to further explore the implications on processes which shape and evolve BCGs/MMCGs over the past ∌7 Gyr
    • 

    corecore