36 research outputs found

    Existence of nuclei with unusual neutron excess?

    Get PDF
    AbstractA realistic model is suggested based on the quasiparticle Lagrange version of the self-consistent Finite Fermi Systems theory supplemented with the microscopically calculated surface parameters of the Landau–Migdal interaction amplitude. The latter are expressed in terms of the off-shell T-matrix of free NN-scattering and show a strong dependence on the chemical potential of a nucleus under consideration in the drip line vicinity. This effect could result in shifting the neutron drip line position to very large values of the neutron excess

    3P2^3P_2-3F2^3F_2 Pairing in Dense Neutron Matter: The Spectrum of Solutions

    Get PDF
    The 3P2^3P_2-3F2^3F_2 pairing model is generally considered to provide an adequate description of the superfluid states of neutron matter at densities some 2-3 times that of saturated symmetrical nuclear matter. The problem of solving the system of BCS gap equations expressing the 3P2^3P_2-3F2^3F_2 model is attacked with the aid of the separation approach. This method, developed originally for quantitative study of S-wave pairing in the presence of strong short-range repulsions, serves effectively to reduce the coupled, singular, nonlinear BCS integral equations to a set of coupled algebraic equations. For the first time, sufficient precision becomes accessible to resolve small energy splittings between the different pairing states. Adopting a perturbative strategy, we are able to identify and characterize the full repertoire of real solutions of the 3P2^3P_2-3F2^3F_2 pairing model, in the limiting regime of small tensor-coupling strength. The P-F channel coupling is seen to lift the striking parametric degeneracies revealed by a earlier separation treatment of the pure, uncoupled 3P2^3P_2 pairing problem. Remarkably, incisive and robust results are obtained solely on the basis of analytic arguments. Unlike the traditional Ginzburg-Landau approach, the analysis is not restricted to the immediate vicinity of the critical temperature, but is equally reliable at zero temperature. Interesting connections and contrasts are drawn between triplet pairing in dense neutron matter and triplet pairing in liquid 3^3He.Comment: 23 pages, 1 figur

    Entropy paradox in strongly correlated Fermi systems

    Full text link
    A system of interacting, identical fermions described by standard Landau Fermi-liquid (FL) theory can experience a rearrangement of its Fermi surface if the correlations grow sufficiently strong, as occurs at a quantum critical point where the effective mass diverges. As yet, this phenomenon defies full understanding, but salient aspects of the non-Fermi-liquid (NFL) behavior observed beyond the quantum critical point are still accessible within the general framework of the Landau quasiparticle picture. Self-consistent solutions of the coupled Landau equations for the quasiparticle momentum distribution n(p)n(p) and quasiparticle energy spectrum ϵ(p)\epsilon(p) are shown to exist in two distinct classes, depending on coupling strength and on whether the quasiparticle interaction is regular or singular at zero momentum transfer. One class of solutions maintains the idempotency condition n2(p)=n(p)n^2(p)=n(p) of standard FL theory at zero temperature TT while adding pockets to the Fermi surface. The other solutions are characterized by a swelling of the Fermi surface and a flattening of the spectrum ϵ(p)\epsilon(p) over a range of momenta in which the quasiparticle occupancies lie between 0 and 1 even at T=0. The latter, non-idempotent solution is revealed by analysis of a Poincar\'e mapping associated with the fundamental Landau equation connecting n(p)n(p) and ϵ(p)\epsilon(p) and validated by solution of a variational condition that yields the symmetry-preserving ground state. Paradoxically, this extraordinary solution carries the burden of a large temperature-dependent excess entropy down to very low temperatures, threatening violation of the Nernst Theorem. It is argued that certain low-temperature phase transitions offer effective mechanisms for shedding the entropy excess. Available measurements in heavy-fermion compounds provide concrete support for such a scenario.Comment: 34 pages, 6 figure

    Fermi surface properties of the bifunctional organic metal κ-(BETS)2Mn[N(CN)2]3 near the metal-insulator transition

    Get PDF
    We present detailed studies of the high-field magnetoresistance of the layered organic metal κ-(BETS)2Mn- [N(CN)2]3 under a pressure slightly above the insulator-metal transition. The experimental data are analyzed in terms of the Fermi surface properties and compared with the results of first-principles band structure calculations. The calculated size and shape of the in-plane Fermi surface are in very good agreement with those derived from Shubnikov-de Haas oscillations as well as the classical angle-dependent magnetoresistance oscillations. A comparison of the experimentally obtained effective cyclotron masses with the calculated band masses reveals electron correlations significantly dependent on the electron momentum. The momentum- or band-dependent mobility is also reflected in the behavior of the classical magnetoresistance anisotropy in a magnetic field parallel to layers. Other characteristics of the conducting system related to interlayer charge transfer and scattering mechanisms are discussed based on the experimental data. Besides the known high-field effects associated with the Fermi surface geometry, new pronounced features have been found in the angle-dependent magnetoresistance, which might be caused by coupling of the metallic charge transport to a magnetic instability in proximity to the metal-insulator phase boundary

    Solution of the microscopic gap equation for a slab of nuclear matter with the Paris NN-potential

    Full text link
    The gap equation in the 1S0^1S_0-channel is solved for a nuclear slab with the separable form of the Paris potential. The gap equation is considered in the model space in terms of the effective pairing interaction which is found in the complementary subspace. The absolute value of the gap Δ\Delta turned out to be very sensitive to the cutoff KmaxK_{max} in the momentum space in the equation for the effective interaction. It is necessary to take Kmax=160180fm1K_{max}=160-180 fm^{-1} to guarantee 1% accuracy for Δ\Delta. The gap equation itself is solved directly, without any additional approximations. The solution reveals the surface enhancement of the gap Δ\Delta which was earlier found with an approximate consideration. A strong surface-volume interplay was found also implying a kind of the proximity effect. The diagonal matrix elements of Δ\Delta turned out to be rather close to the empirical values for heavy atomic nuclei.Comment: 17 pages, 12 figure

    Shubnikov–de Haas oscillations and electronic correlations in the layered organic metal κ-(BETS)₂Mn[N(CN)₂]₃

    No full text
    We present magnetoresistance studies of the quasi-two-dimensional organic conductor κ-(BETS)₂Mn[N(CN)₂]₃, where BETS stands for bis(ethylenedithio)tetraselenafulvalene. Under a moderate pressure of 1.4 kbar, required for stabilizing the metallic ground state, Shubnikov–de Haas oscillations, associated with a classical and a magnetic-breakdown cyclotron orbits on the cylindrical Fermi surface, have been found at fields above 10 T. The effective cyclotron masses evaluated from the temperature dependence of the oscillation amplitudes reveal strong renormalization due to many-body interactions. The analysis of the relative strength of the oscillations corresponding to the different orbits and of its dependence on magnetic field suggests an enhanced role of electron-electron interactions on flat parts of the Fermi surface

    Magnetic quantum oscillations in the charge-density-wave state of the organic metals α-(BEDT-TTF)₂MHg(SCN)₄ with M = K and Tl

    No full text
    The low-temperature charge-density-wave (CDW) state in the layered organic metals α-(BEDT-TTF)₂MHg(SCN)₄ has been studied by means of the Shubnikov–de Haas and de Haas–van Alphen effects. In addition to the dominant α-frequency, which is also observed in the normal state, both the magnetoresistance and magnetic torque possess a slowly oscillating component. These slow oscillations provide a firm evidence for the CDW-induced reconstruction of the original cylindrical Fermi surface. The α-oscillations of the interlayer magnetoresistance exhibit an anomalous phase inversion in the CDW state, whereas the de Haas–van Alphen signal maintains the normal phase. We argue that the anomaly may be attributed to the magnetic-breakdown origin of the α-oscillations in the CDW state. A theoretical model illustrating the possibility of a phase inversion in the oscillating interlayer conductivity in the presence of a spatially fluctuating magnetic breakdown gap is proposed

    Adaptation of the Landau-Migdal Quasiparticle Pattern to Strongly Correlated Fermi Systems

    Full text link
    A quasiparticle pattern advanced in Landau's first article on Fermi liquid theory is adapted to elucidate the properties of a class of strongly correlated Fermi systems characterized by a Lifshitz phase diagram featuring a quantum critical point (QCP) where the density of states diverges. The necessary condition for stability of the Landau Fermi Liquid state is shown to break down in such systems, triggering a cascade of topological phase transitions that lead, without symmetry violation, to states with multi-connected Fermi surfaces. The end point of this evolution is found to be an exceptional state whose spectrum of single-particle excitations exhibits a completely flat portion at zero temperature. Analysis of the evolution of the temperature dependence of the single-particle spectrum yields results that provide a natural explanation of classical behavior of this class of Fermi systems in the QCP region.Comment: 26 pages, 14 figures. Dedicated to 100th anniversary of A.B.Migdal birthda

    Interaction of the single-particle and collective degrees of freedom in non-magic nuclei: the role of phonon tadpole terms

    Full text link
    A method of a consistent consideration of the phonon contributions to mass and gap operators in non-magic nuclei is developed in the so-called g^2 approximation, where g is the low-lying phonon creation amplitude. It includes simultaneous accounting for both the usual non-local terms and the phonon tadpole ones. The relations which allow the tadpoles to be calculated without any new parameters are derived. As an application of the results, the role of the phonon tadpoles in the single-particle strength distribution and in the single-particle energies and gap values has been considered. Relation to the problem of the surface nature of pairing is discussed.Comment: 22 pages, 7 figure

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF
    corecore