203 research outputs found

    Optimizing immunoslot blot assays and application to low DNA adduct levels using an amplification approach

    Get PDF
    Immunoslot blot assays have been used for the analysis of many DNA adducts, but problems are frequently encountered in achieving reproducible results. Each step of the assay was examined systematically, and it was found that the major problems are in the DNA fragmentation step and the use of the manifold apparatus. Optimization was performed on both the malondialdehyde–deoxyguanosine (M1dG) adduct and the O6-carboxymethyl–deoxyguanosine (O6CMdG) adduct to demonstrate the applicability to other DNA adducts. Blood samples from the European Prospective Investigation on Cancer(EPIC) study (n = 162) were analyzed for M1dG adducts, and the data showed no correlation with adduct levels in other tissues, indicating that the EPIC blood samples were not useful for studying M1dG adducts. Blood samples from a processed meat versus vegetarian diet intervention (n = 6) were analyzed for O6CMdG, and many were below the limit of detection. The reduction of background adduct levels in standard DNA was investigated using chemical and whole genome amplification approaches. The latter gave a sensitivity improvement of 2.6 adducts per 107 nucleotides for the analysis of O6CMdG. Subsequentreanalysis for O6CMdG showed a weakly significant increase in O6CMdG on the processed meat diet compared with the vegetarian diet, demonstrating that further studies are warranted. 2010 Elsevier Inc. All rights reserved

    EZH2 protein: A promising immunomarker for the detection of hepatocellular carcinomas in liver needle biopsies

    Get PDF
    Background and aims: A previous study of ours indicated that enhancer of zeste homologue 2 (EZH2) plays an important role in hepatocellular carcinoma (HCC) tumorigenesis. The aim of the present study was to investigate the potential diagnostic utility of EZH2 in HCC. Methods: Immunohistochemistry was performed to examine the expression dynamics of EZH2 in two independent surgical cohorts of HCC and non-malignant liver tissues to develop a diagnostic yield of EZH2, HSP70 and GPC3 for HCC detection. The diagnostic performances of EZH2 and a three-marker panel in HCC were re-evaluated by using an additional biopsy cohort. Results: Immunohistochemistry analysis demonstrated that the sensitivity and specificity of EZH2 for HCC detection was 95.8% and 97.8% in the testing cohort. Similar results were confirmed in the validation cohort. For diagnosis of well-differentiated HCCs, the sensitivity and specificity were 68.9% and 91.5% for EZH2, 62.5% and 98.5% for HSP70, 50.0% and 92.1% for GPC3, and 75.0% and 100% for a three-marker panel. In biopsies, positive cases for at least one marker increased from large regenerative nodule and hepatocellular adenoma (0/12) to focal nodular hyperplasia (2/20), dysplastic nodule (7/25), well-differentiated HCC (16/18) and moderately and poorly differentiated HCC (54/54). When at least two positive markers were considered, regardless of their identity, the positive cases were detected in 0/12 large regenerative nodules and hepatocellular adenomas, 0/20 focal nodular hyperplasias, 0/25 dysplastic nodules, 11/18 well-differentiated HCCs, 32/37 moderately differentiated HCCs and 15/17 poorly differentiated HCCs. Conclusion: Our findings suggest that EZH2 protein, as examined by immunohistochemistry, may serve as a promising diagnostic biomarker of HCCs, and the use of a three-marker panel (EZH2, HSP70 and GPC3) can improve the rate of detection of HCCs in liver biopsy tissues.published_or_final_versio

    Genetic Analysis of the Functions and Interactions of Components of the LevQRST Signal Transduction Complex of Streptococcus mutans

    Get PDF
    Transcription of the genes for a fructan hydrolase (fruA) and a fructose/mannose sugar:phosphotransferase permease (levDEFG) in Streptococcus mutans is activated by a four-component regulatory system consisting of a histidine kinase (LevS), a response regulator (LevR) and two carbohydrate-binding proteins (LevQT). The expression of the fruA and levD operons was at baseline in a levQ mutant and substantially decreased in a levT null mutant, with lower expression with the cognate inducers fructose or mannose, but slightly higher expression in glucose or galactose. A strain expressing levQ with two point mutations (E170A/F292S) did not require inducers to activate gene expression and displayed altered levD expression when growing on various carbohydrates, including cellobiose. Linker-scanning (LS) mutagenesis was used to generate three libraries of mutants of levQ, levS and levT that displayed various levels of altered substrate specificity and of fruA/levD gene expression. The data support that LevQ and LevT are intimately involved in the sensing of carbohydrate signals, and that LevQ appears to be required for the integrity of the signal transduction complex, apparently by interacting with the sensor kinase LevS

    Sigma-2 receptor ligand as a novel method for delivering a SMAC mimetic drug for treating ovarian cancer

    Get PDF
    BACKGROUND: The sigma-2 receptor has been validated as a biomarker for proliferating tumours. Second mitochondria-derived activator of caspase (Smac) is a protein released from mitochondria into the cytosol, leading to apoptosis. In this study, we investigated a sigma-2 ligand as a tumour-targeting drug delivery agent for treating ovarian cancer. METHODS: A sigma-2 ligand, SW 43, was conjugated with a Smac mimetic compound (SMC), SW IV-52s, to form SW III-123. The delivery function of the sigma-2 moiety and cell killing mechanisms of SW III-123 were examined in human ovarian cancer cell lines. RESULTS: SW III-123 internalisation into ovarian cancer cells was mediated by sigma-2 receptors. SW III-123, but not SW IV-52s or SW 43, exhibited potent cytotoxicity in human ovarian cancer cell lines SKOV-3, CaOV-3 and BG-1 after 24-h treatment, suggesting that the sigma-2 ligand successfully delivered SMC into ovarian cancer cells. SW III-123 induced rapid degradation of inhibitor of apoptosis proteins (cIAP1 and cIAP2), accumulation of NF-κB-inducing kinase (NIK) and phosphorylation of NF-κB p65, suggesting that SW III-123 activated both canonical and noncanonical NF-κB pathways in SKOV-3 cells. SW III-123 cleaved caspase-8, -9 and -3. Tumour necrosis factor alpha (TNFα) antibody markedly blocked SW III-123-induced cell death and caspase-3 activity in SKOV-3 cells, indicating that SW III-123 activated both intrinsic and extrinsic apoptotic pathways and induced TNFα-dependent cell death in SKOV-3 cells. CONCLUSION: Sigma-2 ligands are a promising tumour-targeting drug delivery agent. Sigma-2-conjugated SMC exemplifies a novel class of therapeutic drugs for treating ovarian cancer

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Lymphatic vessel density and function in experimental bladder cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The lymphatics form a second circulatory system that drains the extracellular fluid and proteins from the tumor microenvironment, and provides an exclusive environment in which immune cells interact and respond to foreign antigen. Both cancer and inflammation are known to induce lymphangiogenesis. However, little is known about bladder lymphatic vessels and their involvement in cancer formation and progression.</p> <p>Methods</p> <p>A double transgenic mouse model was generated by crossing a bladder cancer-induced transgenic, in which SV40 large T antigen was under the control of uroplakin II promoter, with another transgenic mouse harboring a <it>lacZ </it>reporter gene under the control of an NF-κB-responsive promoter (κB-<it>lacZ</it>) exhibiting constitutive activity of β-galactosidase in lymphatic endothelial cells. In this new mouse model (SV40-<it>lacZ</it>), we examined the lymphatic vessel density (LVD) and function (LVF) during bladder cancer progression. LVD was performed in bladder whole mounts and cross-sections by fluorescent immunohistochemistry (IHC) using LYVE-1 antibody. LVF was assessed by real-time <it>in vivo </it>imaging techniques using a contrast agent (biotin-BSA-Gd-DTPA-Cy5.5; Gd-Cy5.5) suitable for both magnetic resonance imaging (MRI) and near infrared fluorescence (NIRF). In addition, IHC of Cy5.5 was used for time-course analysis of co-localization of Gd-Cy5.5 with LYVE-1-positive lymphatics and CD31-positive blood vessels.</p> <p>Results</p> <p>SV40-<it>lacZ </it>mice develop bladder cancer and permitted visualization of lymphatics. A significant increase in LVD was found concomitantly with bladder cancer progression. Double labeling of the bladder cross-sections with LYVE-1 and Ki-67 antibodies indicated cancer-induced lymphangiogenesis. MRI detected mouse bladder cancer, as early as 4 months, and permitted to follow tumor sizes during cancer progression. Using Gd-Cy5.5 as a contrast agent for MRI-guided lymphangiography, we determined a possible reduction of lymphatic flow within the tumoral area. In addition, NIRF studies of Gd-Cy5.5 confirmed its temporal distribution between CD31-positive blood vessels and LYVE-1 positive lymphatic vessels.</p> <p>Conclusion</p> <p>SV40-<it>lacZ </it>mice permit the visualization of lymphatics during bladder cancer progression. Gd-Cy5.5, as a double contrast agent for NIRF and MRI, permits to quantify delivery, transport rates, and volumes of macromolecular fluid flow through the interstitial-lymphatic continuum. Our results open the path for the study of lymphatic activity <it>in vivo </it>and in real time, and support the role of lymphangiogenesis during bladder cancer progression.</p

    Soil Respiration in Tibetan Alpine Grasslands: Belowground Biomass and Soil Moisture, but Not Soil Temperature, Best Explain the Large-Scale Patterns

    Get PDF
    The Tibetan Plateau is an essential area to study the potential feedback effects of soils to climate change due to the rapid rise in its air temperature in the past several decades and the large amounts of soil organic carbon (SOC) stocks, particularly in the permafrost. Yet it is one of the most under-investigated regions in soil respiration (Rs) studies. Here, Rs rates were measured at 42 sites in alpine grasslands (including alpine steppes and meadows) along a transect across the Tibetan Plateau during the peak growing season of 2006 and 2007 in order to test whether: (1) belowground biomass (BGB) is most closely related to spatial variation in Rs due to high root biomass density, and (2) soil temperature significantly influences spatial pattern of Rs owing to metabolic limitation from the low temperature in cold, high-altitude ecosystems. The average daily mean Rs of the alpine grasslands at peak growing season was 3.92 µmol CO2 m−2 s−1, ranging from 0.39 to 12.88 µmol CO2 m−2 s−1, with average daily mean Rs of 2.01 and 5.49 µmol CO2 m−2 s−1 for steppes and meadows, respectively. By regression tree analysis, BGB, aboveground biomass (AGB), SOC, soil moisture (SM), and vegetation type were selected out of 15 variables examined, as the factors influencing large-scale variation in Rs. With a structural equation modelling approach, we found only BGB and SM had direct effects on Rs, while other factors indirectly affecting Rs through BGB or SM. Most (80%) of the variation in Rs could be attributed to the difference in BGB among sites. BGB and SM together accounted for the majority (82%) of spatial patterns of Rs. Our results only support the first hypothesis, suggesting that models incorporating BGB and SM can improve Rs estimation at regional scale
    corecore