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ABSTRACT 

Immunoslot blot assays have been used for the analysis of many DNA adducts but problems 

are frequently encountered in achieving reproducible results. Each step of the assay has been 

systematically examined and it was found that the major problems are in the DNA 

fragmentation step and the use of the manifold apparatus. Optimisation was performed upon 

both the malondialdehyde-deoxyguanosine adduct (M1dG) and the O
6
-carboxymethyl-

deoxyguanosine adduct (O
6
CMdG) to demonstrate the applicability to other DNA adducts. 

Blood samples from the EPIC study (n = 162) were analysed for M1dG adducts and the data 

showed no correlation with adduct levels in other tissues indicating that the EPIC blood 

samples were not useful for studying M1dG adducts. Blood samples from a processed meat vs 

vegetarian diet intervention (n = 6) were analysed for O
6
CMdG and many were below the 

limit of detection. The reduction of background adduct levels in standard DNA was 

investigated using chemical and whole-genome amplification approaches. The latter gave a 

sensitivity improvement of 2.6 adducts per 10
7
 nucleotides for the analysis of O

6
CMdG. 

Subsequent reanalysis for O
6
CMdG showed a weakly significant increase in O

6
CMdG on the 

processed meat diet compared with the vegetarian diet, demonstrating that further studies are 

warranted. 

 

Keywords: immunoslot blot assay; DNA adducts; O
6
CMdG; M1dG; genome amplification; 

EPIC; processed meat 
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INTRODUCTION 

Exposure of cellular DNA to exogenous and endogenous genotoxic agents results in a variety 

of DNA modifications, e.g. DNA adducts, which could be potentially mutagenic and 

represent an initiation step for carcinogenesis. The identification and quantification of very 

low concentrations of DNA lesions in vivo in multi-cell samples requires ultra-sensitive 

methodologies. This is true particularly for the analysis of human samples, where small 

amounts of sample and therefore DNA is normally available. The immunoslot blot (ISB) 

assay was first developed by Nehls and coworkers in 1984 (1). Since then the assay has been 

applied to the detection of several DNA adducts formed both in vitro (2-5) and in vivo (6-12) 

and the use of both monoclonal  (13, 14) and polyclonal (2) antibodies has been described. 

Whilst the former are more specific, the latter tend to have greater sensitivity. In a previous 

paper the development of a very sensitive ISB assay was described for the detection of the 

endogenous adduct malondialdehyde-deoxyguanosine (M1dG, Fig. 1), derived from lipid 

peroxidation, in small amounts of human white blood cell and gastric biopsy DNA and the 

potential for its use in human biomonitoring studies (15) using a monoclonal antibody (16).  
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Fig. 1 Structures of the DNA adducts, M1dG and O
6
CMdG 

The ISB has since been used to detect the M1dG adducts in mice livers (17) and human 

colorectal mucosa (18) and more recently we applied this methodology to the measurement 

of O
6
-carboxymethyl-deoxyguanosine adducts (O

6
CMdG, Fig. 1), using a polyclonal 

antibody (19), derived from nitrosated amines, for in vitro studies and in human blood 
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samples of volunteers consuming a high red meat diet (20). The latter was confirmed by 

alternative qualitative methods of measuring O
6
CMdG (21). 

The advantage of the ISB assay over many other methods of measuring DNA damage is that 

it only requires small amounts of DNA (1 g per sample) and replicates can be analysed on 

the same blot. The handling of radioactive compounds for methods such as 
32

P-postlabelling 

is eliminated and a higher throughput of samples can be achieved, up to 18 samples in two 

days. However, the assay has many steps and problems can occur at any point; during 

fragmentation and denaturation of the double-stranded (DS) DNA standards and samples, 

immobilisation of the resulting single-stranded (SS) DNA on a nitrocellulose membrane, 

incubation with the primary antibody  followed by incubation with a secondary antibody 

tagged with an enzyme complex such as horseradish peroxidase, treatment with a 

chemiluminescence reagent and finally in the acquirement of the chemiluminescence image. 

These problems have deterred researchers and the literature reveals relatively few studies that 

have used the ISB methodology. This study sought to identify, and provide solutions to, the 

most important factors in achieving reliable data from the ISB. Furthermore, a prerequisite 

for the ISB assay is the availability of an appropriate standard, for example calf thymus (CT) 

DNA containing known amounts of modification, in order to generate calibration lines on the 

blot. However, a common problem of measuring endogenous DNA adducts is the presence of 

background levels of the lesion of interest in untreated CT-DNA. This means that the 

detection limit of the assay is potentially lower than the actual limit set by the standard DNA. 

The sensitivity of the assay was sought to be improved either by elimination of the adduct in 

standard CT-DNA or by masking it such that it is not recognised by the primary antibody. 

The use of chemical modification and whole genome amplification approaches are described.  

In addition, an interlab comparison was carried out and the analysis of blood samples was 

investigated as it was found that adducts levels in blood can be very low and thus difficult to 
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measure. The analysis of blood samples is particularly relevant for biomonitoring studies if 

they are to be as non-invasive as possible. The results for M1dG in colorectal mucosa samples 

from the EPIC study had been previously reported and a weak correlation was found with 

dietary saturated fat (18) which was corroborated in an intervention study using blood 

samples (22). The corresponding EPIC blood samples have now been analysed and the results 

are reported in this paper. The analysis of O
6
CMdG in blood was also investigated in 

volunteers that had consumed high levels of processed (nitrite-preserved red) meat compared 

to a vegetarian diet in a small scale pilot study. Previous research had identified the presence 

of the O
6
CMdG adduct in volunteers consuming a high red meat diet (20) and established 

that processed meat leads to higher levels of DNA damage than red meat (23). Thus, the 

present study sought to identify differences in O
6
CMdG adducts between a diet high in 

processed meat compared to a vegetarian diet. 

MATERIALS & METHODS 

Tetramethoxypropane (TMP), guanine, 2’-deoxyadenosine, 2’-deoxyadenosine-3’-

monophosphate, CT–DNA (D1501), genomic ultrapure CT-DNA (D4764), propidium iodide 

(PI), micrococcal nuclease (MN), nuclease P1 (NP1) and goat anti-rabbit IgG horseradish 

peroxidase conjugate were obtained from Sigma-Aldrich (Dorset, UK). Calf spleen 

phosphodiesterase (CSPDE) and human genomic DNA (#1691112) were purchased from 

Boehringer Mannheim (Lewes, East Sussex, UK). Goat anti-mouse IgG horseradish 

peroxidase conjugate was purchased from Dako (Denmark). Phosphate buffered saline (PBS) 

tablets were purchased from Oxoid Ltd. (Basingstoke, UK). Qiagen genomic-tips 100/G were 

purchased from Qiagen Ltd (Crawley, UK). GenomiPhi™ V2 DNA Amplification Kits were 

purchased from GE Healthcare (Little Chalfont, UK).  Methanol used for HPLC analysis was 

for fluorescence application and purchased from Fisher. All other reagents and solvents of 
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analytical grade or HPLC grade were obtained from Fisher Scientific Ltd. (Loughborough, 

UK) or Sigma-Aldrich. 

Synthesis of analytical standards 

M1G (17), M1dG (15), and O
6
CMdG (19) were prepared as previously described. O

6
CMG 

was obtained via acid hydrolysis of O
6
CMdG in 0.1 M formic acid at 70º C for 1 h.  

Preparation of M1dG-DNA standards 

Two highly modified M1dG-DNA standards were prepared independently in different 

laboratories as previously described by treating CT-DNA with malondialdehyde (MDA) (15). 

The DNA concentration and purity were determined by UV spectroscopy using the 

absorbance at 260 nm and the A260/A280 ratio on either a GeneQuant II RNA/DNA calculator 

(Pharmacia Biotech) or a Uvikon XL (Biotek) with LabPowerJ DNARNA purity check 

software. DNA was digested by either acid hydrolysis (see below) or enzymatic digestion 

(15) to the free purines or deoxynucleotides and deoxynucleosides respectively and the DNA 

concentration and adduct levels quantified by HPLC on a Waters Alliance system equipped 

with a Waters 996 photodiode array detector and a Waters 474 scanning fluorescent detector 

or a Waters 600E or Waters 2690 system equipped with a Waters 484 UV and a Waters 470 

fluorescence detector with a narrow-bore Hypersil BDS C18 column (3 µm, 100 x 2.1 mm) 

including a prefilter. The digested DNA was analysed in triplicate (10 µl/sample) using an 

isocratic flow rate of 0.2 ml/min with 0.1 M triethylammonium acetate (pH 5.0), 1% 

methanol for M1G or 4% methanol for M1dG with fluorescence detection (Ex 360 nm, Em 

500 nm). Normal bases were analysed at 260 nm by UV. The modified DNA was diluted to a 

DNA concentration of 100 g/ml and an M1dG concentration of 10 fmol/µg DNA with 

unmodified CT-DNA. Further dilutions were made with 100 g/ml unmodified CT-DNA to 

produce standards in the range of 0-10 fmol M1dG/μg DNA for the ISB calibration line.  
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Preparation of O
6
CMdG-DNA standards 

Highly modified O
6
CMdG-DNA standards were prepared as described previously (20)

 
by 

treating CT-DNA with
 
potassium diazoacetate (KDA). O

6
CMdG-DNA was analysed by 

HPLC as described above using a water/methanol gradient (70:5 to 40:35 in 15 mins) and 

25% 0.1 M heptafluorobutyric acid, with UV analysis for normal bases (260 nm) and 

fluorescence detection of O
6
CMdG and O

6
CMG (Ex 286 nm, Em 378 nm). Quantification 

and preparation of standards for the ISB assay was as described above to give standards in the 

range 0-10 fmol O
6
CMdG/µg DNA and 100 µg/ml DNA.  

Optimisation of adduct-DNA acid hydrolysis 

M1dG-DNA was incubated with 0.1 M and 1 M formic acid or 0.1 M and 1 M HCl at 70° C 

for 1 h, and 0.1 M formic acid or 0.01-6 M HCl at 100° C for 1 h
 
(24) using 2 µg M1dG-DNA 

in 40 µl solution. The solutions were evaporated to dryness and redissolved in 40 µl of 1 mM 

formic acid or 1 mM HCl.  

O
6
CMdG-DNA (20 µg) was incubated with 0.1 M formic acid at 70° C for 1 h (17), 0.1 M 

HCl at 100° C for 30 min, 1 M TFA at RT or 50° C for 1 h (25), and  1 M acetic acid at 50° C 

for 3 h,  and then neutralised with 0.1 M NaOH, and evaporated to dryness and redissolved in 

40 µl 0.1% HFBA. 

Optimisation of the immunoslot blot assay  

The ISB assay was developed from a previous method (15) with modifications to the original 

procedure to improve DNA binding (see below) to the nitrocellulose (NC) membrane (0.1 

m, BA79, or 0.45 m, BA85 Schleicher & Schuell, Dassel, Germany). The primary 

antibody concentrations were: anti-M1dG monoclonal antibody D10A1 (16) diluted 1:90,000, 

and anti-O
6
CMdG polyclonal antibody (19) diluted 1:800. The secondary antibody 

concentrations were: goat anti-mouse IgG horseradish peroxidase conjugate diluted 1:4,000, 
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and goat anti-rabbit IgG horseradish peroxidase conjugate diluted 1:2,000. Enzymatic activity 

was visualised by bathing the membranes for 5 min in Supersignal Ultra (Pierce). 

Chemiluminescence signals from the NC membrane were captured using either the Biorad 

Fluor STM Multimager with the Multianalyst software (Biorad) or on the Kodak Image 

Station 440CF with correction for local background. 

Comparison of sonication methods 

DNA fragmentation was investigated for a number of different sonicators and times: DNA 

samples were 1) sonicated in a Ultrawave U100H and Fisherbrand FB100 bath (2-20 mins 

followed by heat-denaturation at 100º C for 10 min and then kept on ice for 10 min; 2) only 

heat-denatured (no sonication); 3) heat-denatured first and then sonicated; 4) sonications 

were carried out on ice. DNA fragmentation was monitored either by gel electrophoresis or 

by binding to the NC membranes as measured by PI staining.  

Improvement of DNA binding to nitrocellulose membrane 

The following conditions were examined in order to improve DNA binding to NC 

membranes and assessed using the ISB and PI assays: 1) Membranes were baked in a vacuum 

oven at 80° C for 1.5 h (1), 2) NC membranes were bathed for 5 min in SSC buffer (0.75 M 

NaCl, 0.075 M trisodium citrate, pH 7.0) prior to baking, 3) Effects of sample temperature: 

samples were either removed from the icebath after completion of the denaturation step or 

kept at 4 C until application to the membrane, 4) decreasing the vacuum applied during 

sample aspiration and 5) adjustment of the manifold apparatus (Minifold II, 72 well slot blot 

microfiltration apparatus (Schleicher & Schuell)) via insertion of additional spacers. 

Agarose gel electrophoresis 

A volume equivalent to 1 µg DNA or 1 µl of marker were mixed with 2 µl of gel loading 

solution (type 1, 6x concentrate, Sigma G-7654) and made up to 10 µl with ultrapure water. 
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A 2% agarose gel containing ethidium bromide (2.0 µl/100 ml gel) (EtBr, 10 mg/ml) was run 

in 1xTBE buffer (working solution: 90 mM Tris-borate, 2 mM EDTA; pH 8.0) at 120 V for 

1.75 h. A 100 basepair (bp) DNA ladder (Life Technologies, No. 15628-019, 0.25 µg/µl) was 

used as a marker (fragment sizes: 2072, 1500, 1400, 200, 100 bp). The gel image was 

captured using the Biorad Fluor-S
TM

 MultiImager.  

Quantification of DNA binding by propidium iodide staining 

Two CT-DNA calibration lines (0.10-2.50 µg DNA/well) were prepared on the same 

membrane. One half was washed twice for 10 min in 50 ml PBS and the other overnight and 

then both were stained with PI for 3 h. Variations in DNA binding of different sources of 

DNA were examined by comparison of CT-DNA, M1dG-DNA, O
6
CMdG-DNA, Boehringer 

Mannheim (BM) standard DNA and human WBC DNA diluted to give 0.1-2.5 g DNA/well 

and adduct levels (where appropriate) of 0-10 fmol adduct/µg DNA. The ISB procedure was 

followed and the membranes incubated overnight with PI following a 10 min wash. All 

membranes were washed for 1 h in PBS (50 ml) prior to capture of the fluorescent signal 

using either Biorad Fluor-S
TM

 MultiImager or Kodak Imager with filters for >520 nm.  

Reduction of M1dG adduct levels by chemical modification 

Highly modified M1dG-DNA solutions (50 g, 18 pmol M1dG/gDNA) were dissolved in 

KP buffer (10 mM K2HPO4, pH 8, 8.5 and 9) and treated with methoxyamine (5, 20 and 50 

mM). The samples were incubated at -20 C for 16-66 h and then 37 C. Aliquots (4 g) were 

taken at 0-24 h, enzymatically digested to the deoxynucleosides and analysed by HPLC.  

Unmodified CT-DNA (350 g) was dissolved in KP buffer, pH 8 and treated with 0-5 mM 

methoxyamine, incubated for 16-94 h at -20 C followed by 0-24 h incubation at 37 C. DNA 

was precipitated with 0.8 vol isopropanol, washed with 70% ethanol and redissolved in water. 
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CT-DNA samples were analysed by immunnodot blot (IDB) with PI correction and the 

adduct levels calculated from calibration lines acquired with the unmodified CT-DNA. 

Reduction of adduct levels by DNA amplification 

10 ng CT-DNA, M1dG-DNA (21 pmol M1dG/ug DNA) O
6
CMdG-DNA (1.3 pmol 

O
6
CMdG/ug DNA) and the kit control were amplified using a GenomiPhi™ kit following the 

manufacturer's protocol. The DNA was purified by precipitation with a sodium 

acetate/EDTA buffer (final concentration = 0.25 M/0.04 M, pH 8.0) and quantified by UV. 

The adduct levels in the amplified DNA samples were quantified by ISB using the original 

standards. Calibration lines were compared for the amplified and original CT-DNA with 

standards in the range 0-3 fmol/ug DNA. 

Human blood samples for M1dG analysis 

162 blood samples from the EPIC study that had been collected at the same time as colon 

biopsy samples (18) were analysed for M1dG adducts.  

Human blood samples for O
6
CMdG analysis 

Healthy males (n = 4) and females (n = 2) from Cambridgeshire were recruited through local 

advertisements and participated in a randomised crossover intervention study consuming 

processed meat versus vegetarian diets as described previously (23). The participants were 

between 25 and 50 years of age, nonsmokers, free from diabetes and bowel disease, not 

taking medication affecting the gut for at least 3 months prior to the study, not pregnant and 

not participating in another biochemical intervention study at the same time. The studies were 

approved by the Cambridge Local Research Ethics Committee. Blood samples were collected 

at the end of each dietary period and the DNA isolated using Qiagen kits.  
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Analysis of blood samples 

All blood samples were analysed using the optimised ISB assay on a 0.1 µm membrane with 

PI correction. Calibration lines were in the range of 0-5 fmol adducts/µg DNA using either 

CT-DNA or amplified CT-DNA to produce the standards. Analyses were performed in 

triplicate on the same blot and only the results with a SD of < 20% were included in the 

reported data. A human DNA QC sample (Boehringer Mannheim) was included in all assays 

for M1dG and the results rejected if the QC had a SD of > 20% for the triplicate analyses or 

the QC result was > 2 SD from the mean of all the QC results (2.00 adducts per 10
7
 normal 

bases +/- sd 1.27). The limit of detection was 0.2 adducts per 10
7

 normal nucleotides (15). 

Statistics 

Statistical analyses were performed using SPSS for Windows version 15.0. Correlations 

between M1dG adduct levels in blood and colon biopsies were assessed by Spearman rank 

correlation coefficient. Differences in O
6
CMdG adduct levels between dietary periods were 

assessed by Wilcoxon signed rank tests for related samples. 

RESULTS 

Preparation of standards for ISB assays 

Under mild acid hydrolysis conditions only the purine bases are completely released. Acid 

hydrolysis of DNA samples was not found to affect the guanine:adenine ratio under any of 

conditions tested. However, the ratio for M1G:G varied considerably; incubation with 0.1 M 

formic acid at 70° C released the highest level of adduct (M1dG:G 0.13:1) whereas 0.01-6 M 

HCl at 70-100° C resulted in reduced adduct levels, and release of pyrimidine bases in the 

highest acid concentrations. Similarly, 0.1 M HCl gave a reduced level of O
6
CMG adducts 

relative to 0.1 M formic acid. Hydrolysis of O
6
CMdG with 1 M TFA (25) was not as 

effective as 0.1 M formic acid as was evident from the presence of a small peak for O
6
CMdG 



 12 

in the chromatogram of the hydrolysed sample.  Hence, 0.1 M formic acid was determined to 

be the best method for hydrolysis with respect to both DNA concentration and adduct 

quantitation for both M1dG and O
6
CMdG.  

Two M1dG-DNA standards were prepared and analysed in independent labs by different 

methods. In lab 1 the DNA was hydrolysed using the 0.1 M formic acid method at 70° C and 

the M1dG adduct level was determined to be 21 pmol/µg DNA. Lab 2 prepared separate 

standards and determined the M1dG adduct level to be 18 pmol/µg which was confirmed by 

an LC-MS method in Nashville, USA where it was established as approximately 17 pmol/µg 

by John Plastaras (personal communication). Comparison of the two diluted standards by ISB 

assay gave very similar results for the calibration lines thus validating the methods used for 

preparation of standards and acquirement of calibration lines by independent labs; Lab 1: R
2
 

= 0.95, y = 43862x + 45004, Lab 2: R² = 0.99, y = 38579x + 28721.  

Quantitation of DNA binding by propidium iodide staining 

The effects of residual reagents upon PI staining were investigated and the fluorescent signals 

were similar for an initial wash time of 10 min and overnight (data not shown). CT-DNA 

calibration lines were acquired with a PI incubation time of overnight or 3 h and both gave a 

good correlation between the amount of DNA bound to the membrane and the signal intensity 

(R
2
 = 0.95 and 0.98). However, the shorter incubation time gave the better correlation and a 

higher slope (3304 compared with 1864). The adduct levels were not found to affect the PI 

intensity in either the M1dG-DNA or O
6
CMdG-DNA standards as compared with the CT-

DNA standards (data not shown) 

DNA fragmentation and improvement of DNA binding to NC membranes 

The PI assay revealed major differences in binding to NC membrane between human and CT 

DNA, 1.5-2.5 times more human WBC DNA was binding to the NC membrane as compared 
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to the CT-DNA standards. DNA quantitation for samples and standards was reliable (UV and 

HPLC analysis) so the cause must be due to one of the sample preparation steps. The 

fragmentation of human WBC and CT-DNA following sonication was investigated using 

agarose gel electrophoresis. Differences in fragmentation between CT-DNA and human 

WBC DNA were quite evident; in general CT-DNA fragmented to lower molecular weight 

fragments (100-600 bp) than human genomic DNA (fragments >600 bp). Ultrapure CT-DNA 

(Sigma) gave fragments greater than 600 bp. 

The PI staining showed that a reduction in sonication times and sonication on ice were both 

beneficial to reducing the variability in DNA binding to NC membranes whereas the order, or 

omission, of the sonication and denaturation steps had no effect upon the relative binding of 

different DNA sources. Comparison of the Fisherbrand and Ultrawave sonication baths also 

revealed major differences in DNA binding. Previous papers reported sonication times of 20 

min but 2 min sonication on ice gave a poor calibration line with the Fisherbrand sonicator 

whereas very good calibration lines could be obtained with the Ultrawave sonicator. Hence, 

fragment size is very dependent upon the sonicator used and the sonication time. Sonication 

is known to be a variable method for sample preparation but can be used under carefully 

controlled conditions that need to be verified prior to the ISB assay. Furthermore it is far 

more time and cost effective than enzymatic hydrolysis. 

Further improvement in binding DNA was achieved by keeping the samples on ice after the 

denaturation step until application to the NC membrane (CV = 13%). The PI signals for CT-

DNA and BM DNA were also much closer in intensity, with only 12% and 10% variation 

within each sample set, and a 21% variation overall. Substituting ammonium acetate for 20x 

SSC buffer made no difference to the DNA binding or quality of calibration lines obtained 

(R
2
 = 0.99 for both buffers). 
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The binding of DNA on two different NC membranes was investigated using the PI assay. 

Only 33% of DNA was binding to the 0.45µm membrane compared to the 0.1 µm membrane. 

Baking the membrane at 80° C for 1.5 h in a vacuum oven compared to a normal oven 

resulted in approximately 40% more DNA bound. When the NC membrane was bathed in 

SSC buffer, 44% more DNA was binding to the membrane. However, relative differences in 

binding to the membrane between CT-DNA and human samples, as measured by PI ratios, 

did not alter using either method.  

A critical factor appeared to be the ISB manifold. An increase in the tightness of the manifold 

apparatus by insertion of additional spacers in conjunction with a reduced vacuum during 

aspiration gave more consistent binding across the entire membrane as seen by the variation 

in PI intensity. The CV for the PI signal across the entire plate was improved from 26% to 

15% with a reduction in vacuum from 60 to 0.5 mm Hg and the insertion of three acetate 

layers as additional spacers.  

Reduction of M1dG Levels by chemical modification 

Background adduct levels in DNA can in principal be reduced by chemical modification such 

that the primary antibody does not recognise it. Niedernhofer et al (26) discovered that 

raising the pH causes the M1dG adduct ring to open. This was utilised for subsequent reaction 

with methoxyamine to occur. M1dG levels were reduced in highly modified M1dG-DNA 

following treatment with 5 mM methoxyamine in KP buffer at different pHs. Incubating the 

samples for 16-66 h at -20° C showed a progressive reduction to 42-76% of the original value 

which reduced further with incubation at 37° C (an additional 12% at pH 8.0 and 17% at pH 

9.0). No adverse effect was observed for normal nucleotides whereas treatment with higher 

concentrations of methoxyamine gave a 20-50% decrease in dAp. We also investigated the 

modification with hydroxylamine (data not shown) but this gave less reliable results than the 

methoxyamine experiments. Analysis of methoxyamine treated CT-DNA by IDB assay 



 15 

showed that there was a reduction in background adduct levels for all the treatments (data not 

shown) compared with the untreated CT-DNA. This finding agreed with the HPLC results for 

the highly modified M1dG-DNA. However, use of the methoxyamine-treated CT-DNA to 

prepare standards for the ISB assay gave no benefit in terms of a reduced background signal 

for the ISB calibration line  

Reduction of background adduct levels by whole genome amplification 

Amplification of DNA using the GenomiPhi™ kits, followed by purification, gave good 

yields of high quality DNA. Initial experiments with highly modified O
6
CMdG-DNA showed 

that the adduct levels could be reduced to almost zero or below zero relative to the 

unmodified CT-DNA used for the ISB standards (Table 1). This shows a reduction in adduct 

levels of almost three orders of magnitude i.e. 1 pmol to 2 fmol. Other sources of DNA, 

which should be close to baseline values, all gave adduct levels below the LOD of the ISB 

assay after amplification (Table 1). Amplification of CT-DNA was then performed and the 

amplified DNA used to produce standards for the ISB assay by mixing it with the highly 

modified standard DNA for either M1dG or O
6
CMdG. The calibration lines all had good 

linearity (R
2
 >0.97), however, the O

6
CMdG assay gave a lower background reading as 

indicated by the intercept (2008 compared to 4150 for normal CT-DNA) as was to be 

expected if the adducts had been diluted by the amplification process but the M1dG assay 

actually gave higher background readings. This was verified in triplicate thus the background 

for M1dG is not due solely to adducts in the CT-DNA, but possibly non-specific binding or 

interference from other aspects of the assay. Therefore DNA amplification is not beneficial in 

the case of the M1dG calibration lines but has proven beneficial for O
6
CMdG assay. 
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Table 1 O
6
CMdG adduct levels in amplified DNA measured by ISB (mean ± sd) relative to 

the original CT-DNA standards. The amplification reactions for each sample were prepared 

and performed in triplicate.  

Amplified DNA sample  O
6
CMdG levels (fmol/ µg DNA)  sd 

Unmodified CT DNA -0.18  2.10 

Highly modified O
6
CMdG-DNA 2.33  3.18 

human DNA -0.95  1.09 

Genomiphi kit control DNA -0.57  0.65 

 

M1dG adducts in blood samples from the EPIC study 

162 blood samples were analysed for M1dG adducts and had an average of 1.61 (sd 0.59), 

adducts per 10
7
 normal nucleotides (range 0.36-3.79). These were much lower than 

previously found in the biopsy samples where average levels were 4.45 (sd 2.99) adducts per 

10
7
 (range 0-11.89). The correlation coefficient between the two sets of samples was 0.06, p 

= 0.55. Some of the samples were at, or below, the LOD but as the amplification approach 

had proved unsuccessful for M1dG it was not possible to perform any further analyses. 

O
6
CMdG adducts in blood samples from a processed meat study 

Blood samples were analysed using the optimised ISB procedure but all samples, with one 

exception, had O
6
CMdG levels below the LOD using standards produced from CT-DNA. 

Calibration curves were then produced with the amplified DNA and highly modified CT-

DNA and these samples were reanalysed on a single blot. All samples gave a positive result 

with the amplified DNA calibration line whereas only one sample had a positive result with 

the conventional CT-DNA calibration line. The mean results are shown in Table 2 whilst Fig. 

2 shows that the general trend for each volunteer was a higher adduct level on the processed 

meat diet compared with the vegetarian diet. The data was analysed by Wilcoxon signed 
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ranks test and gave a weak significant difference between processed meat and vegetarian 

diets (Z = -1.782, p = 0.075). The use of amplified DNA for preparation of standards gave an 

increase in sensitivity of 2.6 adducts per 10
7
 nucleotides and the results presented show the 

ability of the technique to differentiate between samples at this level. 

Table 2 O6CMdG adduct levels in human blood DNA from volunteers on a processed meat 

vs vegetarian diet. Adduct analysis was by ISB using standards prepared from amplified 

DNA with correction by PI staining, and statistical analysis by Wilcoxon signed ranks test. 

 Processed meat Vegetarian 

Mean 1.84 1.51 

Range 1.43-2.63 1.29-1.70 

SD 0.43 0.17 

Z = -1.782 p = 0.075 
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Fig.  2 O
6
CMdG adduct levels (mean ± sd, CV = 4-20%) in blood samples from volunteers 

consuming processed meat vs vegetarian diets. Adduct levels were measured by ISB using 

calibration lines produced from amplified DNA. 

DISCUSSION 

When performing any analytical measurements it is essential to have a reliable and accurately 

quantified standard. We have shown that it is possible to quantify a M1dG-DNA standard by 

a number of methods which included an acid hydrolysis step that needed to be optimised for 

the adduct recovery. The calibration lines compared well with those using enzymatic 

cleavage from a different lab. Having obtained and quantified a reliable standard we 

investigated all aspects of the ISB assay. The model of ultrasonic bath did have an effect 

upon DNA binding to the membranes due to the difference in fragmentation that occurred. A 

reduction in sonication time lead to improved binding due to larger DNA fragments being 
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obtained, as would be expected. Fragmentation is usually achieved by enzymatic methods but 

is more time consuming and costly and, therefore sonication is preferable if the 

reproducibility can be assured. Performing the sonication on ice resulted in further 

improvements to DNA binding presumably due to preventing the formation of superheated 

microcavities which may cause localised degradation of the DNA structure to give a number 

of fragments that are too small to be retained upon the NC membrane. The critical factor for a 

successful ISB assay is binding of the DNA to the NC membrane. As expected a smaller pore 

size led to greater binding of DNA and the 0.1 µm membrane is now used for all ISB 

analyses in our group. The PI assay had revealed that DNA binding was often higher on the 

underside of the membrane. One reason could be due to too high a vacuum pulling the DNA 

through the membrane too quickly and preventing efficient binding. A water aspirator is 

typically used for the vacuum and gives around 60 mm Hg. Other groups state that a 

moderate vacuum was used but do not specify the actual vacuum. The use of a vacuum pump 

allowed the vacuum to be reduced to a level that gave improved binding. The best result was 

achieved with a very low vacuum (0-10 mm Hg). Another factor was the tightness of the 

minifold apparatus as the design does not allow the manifold to be tightened sufficiently. The 

insertion of additional spacers helped to prevent bleeding of the DNA from the wells. This is 

a matter that can only be resolved by trial and error as each manifold apparatus will vary 

from the next and will alter with time.  

DNA binding to NC membranes is greater for SS-DNA than DS-DNA due to interactions 

between the negatively charged backbone and the membrane surface. It is known that cations 

such as Mg
2+

 can decrease DNA binding (27) but as we used ultrapure water throughout the 

study this was not an issue. The protocol for the ISB assay includes a heat denaturation step 

followed by cooling on ice. However, the samples need to be removed for subsequent steps 

such as centrifugation and addition of reagents which may result in reannealing of DNA. It is 
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therefore essential to keep the samples as cold as possible until application to the membrane 

to ensure maximum DNA binding. The combination of sonication on ice and keeping 

samples on ice until application to the membrane gave much improved DNA binding, which 

resulted in improved calibration lines and lower CVs for triplicate analyses. It is possible to 

use DS-DNA that has not been fragmented but this results in a reduced chemiluminescence 

signal even when the quantity of DNA matches that of SS-DNA. This is presumably due to 

steric hindrance preventing access to the adduct by the antibody. TEXT DELETED 

The reduction of background levels of M1dG adducts with methoxyamine had looked 

promising initially. However, there were still results where the samples had a lower 

chemiluminescence signal than the bottom standard which should not contain any M1dG 

adducts. An alternative approach using the whole genome amplication technique was 

investigated but still did not give a reduced background signal for M1dG. However, a 

reduction in background levels of adducts using the whole genome amplification approach 

was successful with O
6
CMdG. Furthermore, blood samples that had previously been below 

the limit of detection were reanalysed using the amplified DNA to prepare calibration lines 

and positive results obtained.  Thus, this method may prove useful where adduct levels are 

expected to be low and a high sensitivity is required such as in the case of blood samples. 

However, as the background signal, and hence sensitivity, was not reduced in the case of 

M1dG, this method is not suitable for all adducts. The difference between antibodies to the 

amplified DNA may be due to the monoclonal (M1dG) being more specific than the 

polyclonal (O
6
CMdG), and thus the whole genome amplification approach is more applicable 

to reduction of background signals where polyclonal antibodies are in use. 

The current analysis of M1dG levels in blood samples from participants in the EPIC study 

showed no correlation to earlier results from colorectal samples.  However, an intervention 

study had demonstrated the importance of taking samples at appropriate time points (22). 
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This data indicates that the blood samples may not be useful in the case of M1dG due to the 

timing of samples from the EPIC study but the analysis of urine samples by LC-MS may 

yield more informative data (28). The analysis of blood samples from the processed meat 

study did show a difference in adduct levels compared to the vegetarian diet for the majority 

of subjects with no difference between the sexes. This is the first case of a difference having 

been found between diets for O
6
CMdG adducts and warrants further study to investigate the 

link between red meat or processed meat and colorectal cancer. In particular, the timing of 

samples and correlation with other tissues would need to be verified before application to 

large scale studies such as EPIC. The study would need to be repeated on a larger scale in 

order to have sufficient power to show a significant difference. Clearly, the adduct levels 

were very low and the background signal needs to be reduced using a technique such as 

whole genome amplification for the production of standards.  

CONCLUSIONS 

We found that the combination of many factors was synergistic in effect and led to a level of 

improvement for the ISB assay not seen for a single factor alone. The most important factors 

were the careful control of the fragmentation step if sonication methods were used and the 

manifold vacuum, both of which must be determined experimentally for each set of 

laboratory equipment. The ISB assay has been investigated thoroughly and is now at a point 

where good data can be obtained, even from samples with very low adduct levels such as 

blood. Chemical modification and genome amplification of untreated CT-DNA did not 

improve sensitivity for M1dG but standards produced from whole genome amplification may 

be beneficial in improving assay sensitivity for other adducts such as O
6
CMdG. The samples 

analysed for M1dG have shown that blood DNA may not be a good choice for biomonitoring 

in studies such as EPIC as the timing of sample collection is likely to have been critical. 

However, blood samples may be useful for studying other adducts, such as O
6
CMdG and 
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colorectal cancer risk, once the adducts have been proven to be a good indicator of disease 

risk through large scale studies where timing of samples has been thoroughly investigated. 
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