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Abstract

It is increasingly evident about the difficulty to monitor chemical exposure through biomarkers as almost all the biomarkers
so far proposed are not specific for any individual chemical. In this proof-of-concept study, adult male zebrafish (Danio rerio)
were exposed to 5 or 25 mg/L 17b-estradiol (E2), 100 mg/L lindane, 5 nM 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or
15 mg/L arsenic for 96 h, and the expression profiles of 59 genes involved in 7 pathways plus 2 well characterized biomarker
genes, vtg1 (vitellogenin1) and cyp1a1 (cytochrome P450 1A1), were examined. Relative distance (RD) computational model
was developed to screen favorable genes and generate appropriate gene sets for the differentiation of chemicals/
concentrations selected. Our results demonstrated that the known biomarker genes were not always good candidates for
the differentiation of pair of chemicals/concentrations, and other genes had higher potentials in some cases. Furthermore,
the differentiation of 5 chemicals/concentrations examined were attainable using expression data of various gene sets, and
the best combination was the set consisting of 50 genes; however, as few as two genes (e.g. vtg1 and hspa5 [heat shock
protein 5]) were sufficient to differentiate the five chemical/concentration groups in the present test. These observations
suggest that multi-parameter arrays should be more reliable for biomonitoring of chemical exposure than traditional
biomarkers, and the RD computational model provides an effective tool for the selection of parameters and generation of
parameter sets.
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Introduction

Increasing attention has been drawn to the wide occurrence of

natural and man-made chemicals in the aquatic environment.

Many chemicals can be bioaccumulated in the aquatic organisms

and magnified in the food chains, thus threatening human health.

The Minamata disease is a typical case, where methylmercury

(MeHg) poisoning occurred in human due to the ingestion of fish

and shellfish contaminated by MeHg [1]. Such scenarios have

promoted researchers to develop early-warning methods for

monitoring contaminants in the aquatic system through both

chemical monitoring and biomonitoring.

As new pollutants in the environment are emerging rapidly, it

becomes increasingly unfeasible to monitor all contaminants in the

environment. Since the presence of a foreign chemical in a

segment of the environment does not always indicate adverse

biological effects [2], it is important to combine chemical

monitoring with the biomonitoring for a reliable environmental

risk assessment. An ideal approach is to examine biological

responses that can reflect the contaminants in the exposed

organisms [2]. Under this concept, various biomarkers from fish

have been proposed and used for biomonitoring aquatic contam-

inants. However, most of biomarkers proposed were not specific

for individual chemicals. For example, biomarker for estrogen, vtg1

mRNA could be induced not only by the native female hormone,

17b-estradiol (E2), but also by many other compounds that can

interact with estrogen receptors, including many xenobiotics, such

as lindane [3]. The expression of cyp1a1 was up-regulated by

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as well as by other

chemicals such as arsenic in mice [4].

It has been demonstrated that exposure to single chemicals

generated unique gene expression signature in experimental

animals [5–9]. Therefore, a multi-parameter quantitative real-

time PCR (qRT-PCR) array could be developed as a useful tool to

differentiate a complicated set of chemical groups. However, in

previous studies, the parameters (genes) were selected only based

on responsive difference of gene expression among chemicals after

exposure [10–11] and did not represent the best parameter (gene)

set for the discrimination of chemicals. Therefore, a proof-of-

concept study was designed and conducted in the present study,

with the objective of finding the best parameter (gene) set for the

discrimination of chemicals tested. Especially, a relative distance

(RD) computational model was developed to select gene sets from

61 gene examined for chemical discrimination. Therefore, it is

feasible to integrate qRT-PCR arrays and RD computational
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model to develop a reliable biomonitoring tool for chemical

exposure.

Materials and Methods

Chemicals and reagents
E2, lindane, TCDD and arsenic (Na2HAsO4?7H2O) were

purchased from Sigma (St. Louis, MO, USA). Arsenic was

dissolved in deionized water directly and the other three chemicals

were dissolved in dimethyl sulfoxide (DMSO) as stock solutions.

The TRizol reagent and LightCycle FastStart DNA Master SYBR

Green I were obtained from Invitrogen (New Jersey, NJ, USA) and

Roche Applied Science (Mannheim, Germany), respectively.

Fish and chemical exposure
In this study, experimental procedures were carried out

following the approved protocol by Institutional Animal Care

and Use Committee of National University of Singapore (Protocol

079/07). Adult male zebrafish (Danio rerio, 5-month old) were

purchased from a local aquarium farm (Mainland Tropical Fish

Farm, Singapore), and acclimated for at least two weeks in our

aquarium before chemical treatment. After acclimation, fish were

exposed to 5 nM TCDD, 5 mg/L E2, 50 mg/L E2, 100 mg/L

lindane or 15 mg/L arsenic for 96 h in a static condition. Each

tank (5 L size) included 3 L exposure solution and 3 fish, and each

concentration included 3 replicated tanks. During the exposure

period, fish were fed once a day with commercial frozen

bloodworms (Hikari) as described before [12]. The concentrations

of these chemicals were chosen based on previous studies of ours

and others [12–16], where biological effects of these concentra-

tions have been confirmed by significant changes of some mRNAs

examined. For E2, two concentrations were used to test the

feasibility to develop a gene expression based model to differen-

tiate exposure concentrations besides different chemicals. Fresh

chemical solutions were daily replaced during the exposure

experiment. For E2, lindane and TCDD exposure experiments,

treatment and control groups received 0.01% DMSO, and for

arsenic exposure experiments, treatment and control groups

received 0.01% deionized water in this study. After 96-h exposure,

the fish were anesthetized with MS-222 (1 mM) and livers were

collected and preserved in TRizol reagent at –80uC until RNA

isolation.

Selection of target genes for PCR array
A PCR array of sixty-one zebrafish genes was designed as

follows. First, seven well characterized pathways commonly

affected by chemicals were selected: oxidative and metabolic

stress [17–18], apoptosis signaling [19–20], proliferation and

carcinogenesis [21–22], DNA damage and repair [23–24], growth

arrest and senescence [25–26], heat shock [27–28], and inflam-

mation pathways [29–30]. Representative genes from these

pathways were selected by referring Molecular Toxicology

PathwayFinder PCR array from SABioscience Gene Network

Central (http://www.sabiosciences.com/rt_pcr_product/HTML/

PAHS-3401Z.html). Second, annotated zebrafish orthologues of

human genes were searched from Ensemble website and

confirmed using online synteny tool [31]; unannotated zebrafish

orhologues were manually determined first by amino acid

sequence comparison with human candidate sequences through

UCSC website (http://genome.ucsc.edu/) and then confirmed by

comparison of genomic organization, chromosomal locations and

chromosomal synteny analysis as conducted in a previously study

[32]. Finally the zebrafish orthologues of 59 human genes were

obtained for designing of PCR primers. In addition, two well-

established biomarker genes, vtg1 and cyp1a1, were also included in

order to compare the potentials of biomonitoring between

traditional biomarkers and genes/gene sets developed in this

study, as inducers of vtg1 and cyp1a1 such as E2 and TCDD were

also used in the present exposure experiments. The complete list of

genes in PCR array and their PCR primeer sequences are

presented in Table S1. The number of genes in each pathway was

14, 10, 10, 6, 4, 13 and 2 for oxidative and metabolic stress,

apoptosis signaling, DNA damage and repair, proliferation and

carcinogenesis, growth arrest and senescence, heat shock and

inflammation pathways, respectively.

Quantitative real-time PCR (qRT-PCR)
Total RNA was isolated from zebrafish livers with TRizol

reagent and used for cDNA synthesis. Real time qPCR was

performed using the LightCycler system (Roche Applied Science,

Mannheim, Germany) with LightCycler FastStart DNA Master

SYBR Green I following manufacturer’s instruction. The primer

sequences were designed using Primer 3 software (http://frodo.wi.

mit.edu/as). The amplicon efficiencies of primers were .90%.

Three housekeeping genes, b-actin (beta-actin), b-2m (beta-2-micro-

globulin) and rpl13a (ribosomal protein L13a), were used as internal

control and the geometric means the expression of the three

housekeeping genes were used as the normalized factor by 22DDCt

method. Each group included three biological replicates and each

replicate included a pool of three fish.

Statistical analysis
Gene expression values were logarithmically transformed (log2)

before statistical analysis. The homogeneity and normality of data

were examined using the Kolmogorov-Smirnov and Levene’s test,

respectively. Statically significant differences between treatment

and corresponding control groups were evaluated by ANOVA

based on a p-value ,0.05. Average linkage (p , 0.05) was used to

examine the cluster relationships of different treatment groups

based on mRNA expression profiles. The statistical analyses were

performed using Kyplot Demo 3.0 software (Tokyo, Japan).

Relative distance (RD) computational model
The differentiation of two chemical/concentration groups not

only depends on Euclidean distance between the two groups but

also depends on the distance among individual replicates within

each group. In this study, the RD computational model was

developed to quantitatively describe the potential that three

biological replicates from group A can be differentiated from the

three replicates in group B based on mRNA expression profiles

(fold change), and RD between one replicate from group A

treatment and three replicates from group B (rda1b)

rda1b~mda1b{mdaa{1=2|SDa1b{1=2|SDaa ð1Þ

mda1b~(da1b1zda1b2zda1b3)=3 ð2Þ

mdaa~(da1a1zda1a3)=2 ð3Þ

Selecting Biomarkers in Fish
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da1b1~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xj

j~1

(a1j{b1j)
2

vuut

da1b2~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xj

j~1

(a1j{b2j)
2

vuut

da1b3~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xj

j~1

(a1j{b3j)
2

vuut

ð4Þ

da1a3~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xj

j~1

(a1j{a3j)
2

vuut ð5Þ

SDa1b~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
((da1b1{mda1b)2z(da1b2{mda1b)2z(da1b3{mda1b)2)=(3{1)

q
ð6Þ

SDaa~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
((da1a2{mdaa)2z(da1a3{mdaa)2)=(2{1)

q
ð7Þ

where j is the total number of genes examined; a and b are gene

expression values in the treatment groups A and B, respectively;

mda1b is the mean Euclidean distance between one biological

replicate from treatment group A (a1) and three replicates from

treatment group B (b1, b2, b3); mdaa is the mean Euclidean distance

between one biological replicate from treatment group A (a1) and

other two biological replicates from the same group (a2, a3); SDa1b

is the standard deviation of Euclidean distance between one

biological replicate from treatment group A (a1) and three

replicates from treatment group B (b1, b2, b3); SDaa is the standard

deviation of Euclidean distance between one biological replicate

from treatment group A treatment and other two biological

replicates from the same group; da1b1, da1b2 and da1b3 are the

Euclidean distance between one biological replicate from treat-

ment group A (a1) and three replicates from treatment group B (b1,

b2, b3); da1a2 and da1a3 are the Euclidean distance of biological

responses between one biological replicate from treatment group A

(a1) and other two biological replicates from the same group (a2,

a3).

In this study, first, we calculated all the RD values between two

chemical treatment groups using expression data of individual

genes. When all six RD values were .0 for each pair of chemicals,

it was considered that the gene could be used to differentiate the

two chemicals/concentrations. The cluster analyses (average

linkage) were performed using commercial software (Kyplot Demo

3.0, Tokyo, Japan) (p-value ,0.05) to confirm the feasibility of RD

model in screening genes for the differentiation of chemical/

concentration treatments. Second, the mean RD values were

calculated to quantitatively compare the potentials of individual

genes in differentiating two chemicals/concentrations. Finally, a

C-language computational program (see Program S1) was edited

for selecting genes and generating gene sets that could be used to

differentiate all of five chemical/concentration treatments simul-

taneously using the RD model developed in this study, and

maximum mean RD of each gene sets with the same amount of

genes and the corresponding components of genes were outputted.

Results

Broad changes of gene expression patterns in the seven
selected pathways in response to chemical insults

Adult male zebrafish were treated with 5 nM TCDD, 5 mg/L

E2, 50 mg/L E2, 100 mg/L lindane or 15 mg/L arsenic for

96 hours and no mortalities were observed throughout the

exposure experiment. As shown in Figure 1 and Table S2,

exposure to different chemicals led to different gene expression

profiles. TCDD exposure significantly down-regulated the expres-

sion of most selected genes involved in the oxidative and metabolic

stress, apoptosis signaling, DNA damage and repair, proliferation

and carcinogenesis, growth arrest and senescence, heat shock and

inflammation pathways, while the expression of cyp1a1, hspa5 and

hsp70 (heat shock protein 70-kDa) was among the highest up-

regulated. Treatment with arsenic significantly altered the

expression of most selected genes in the seven pathways, such as

up-regulation of expression of ptgs1 (prostaglandin-endoperoxide synthase

1), cyp1a1 and hsp90aa1 (heat shock protein 90, alpha, class A member 1,

tandem duplicate 1), and down-regulation of b1p1 (Bcl-XL-like protein

1), tnfr (tumor necrosis factor receptor) and vtg1. A significant up-

regulation in the expression of vtg1 was observed upon exposure to

5 or 50 mg/L E2, clearly showing estrogenic activity. Similar to

TCDD, exposure to E2 (5 or 50 mg/L) significantly down-

regulated the expression of most selected genes included in the

seven pathways investigated. In contrast, exposure to lindane up-

regulated the expression of most selected genes in the seven

pathways; with exception of only few down-regulated genes,

notably cdkn1a (cyclin-dependent kinase inhibitor 1A, transcript variant 1)

in the growth arrest and senescence pathway and fmo5 (flavin

containing monooxygenase 5) in the oxidative and metabolic stress

pathway.

Correlation of RD and potential differentiation of
chemical treatment pairs

Using an RD computational model, we calculated all of RD

values between two chemical/concentration treatment groups

based on expression fold change of individual genes and the results

are presented in Figure 2 (see details in Table S3) for all of the 10

possible chemical/concentration pairs. The ability of each of the

61 genes to discriminate the chemical/concentration pairs was

tested by the software Kyplot Demo 3.0 program and the findings

are presented in Figure 2. There was a good correlation of the RD

and the ability to discriminate pair of chemicals/concentrations.

All the genes with top and high RD values were found to be able

to discriminate pair of chemicals/concentrations. For example, the

two best known biomarker genes, vtg1 and cyp1a1, were able to

discriminate eight of the ten pairs: TCDD/arsenic, TCDD/

E2_high, E2_high/lindane, E2_high/arsenic, TCDD/E2_low,

TCDD/lindane, lindane/E2_low, and arsenic/E2_low. However,

for the lindane/arsenic pair, cyp1a1 could not be used to

discriminate them, while for the E2_low/E2_high concentration

pair, both vtg1 and cyp1a1 failed to discriminate them. Interest-

ingly, vtg1 and cyp1a1 were not always among the top of the list

based on the calculated RD. There were also many other genes

(even with better RD) that could be also used to differentiate the

corresponding pair of chemicals.

Selection of discriminating gene sets based on RD
computational model

While it is relatively easy to discriminate a pair of chemical

treatment groups based on expression data from one or few genes,

it is more challenging to discriminate multiple treatment groups.

(6)

Selecting Biomarkers in Fish
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In the current dataset, no single gene can be used to discriminate

all of the five chemical/concentration groups. Thus, it was

necessary to select a gene set for discriminating the chemical/

concentration groups. Here, we further explored the RD model to

select best gene sets for differentiating all of the five chemical/

concentration groups. RDs were computed for all possible gene

combinations from one to 61 genes and the highest mean distances

for gene sets from 1 to 65 genes are presented in Figure 3. For

example, the 2-gene set of the highest mean RD was vtg1 and hspa5

with a value of 10.57 (Figure 3 and Table S4) and the two genes

can be used to discriminate the five chemical/concentration

groups perfectly (Figure 4A). In comparison, the gene pair of best

Figure 1. Gene expression profiles included in seven selected pathways in male zebrafish livers after exposure to 100 mg/L lindane,
5 nM 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 5 mg/L 17b-estradiol (E2), 25 mg/L E2, or 15 mg/L arsenic for 96 h. There were 3
biological replicates, and each replicate were pooled from 3 fish. Gene expressions were expressed as fold change relative to the corresponding
control. The full names of genes can be found in Tables S1 or S2.
doi:10.1371/journal.pone.0083954.g001

Figure 2. Mean Relative Distances (RDs) between two chemicals/concentration groups. (A) TCDD vs. Arsenic; (B) TCDD vs. E2_high; (C)
E2_low vs. E2_high; (D) E2_high vs. Lindane; (E) E2_high vs. Arsenic; (F) TCDD vs. E2_low; (G) TCDD vs. Lindane; (H) Lindane vs. Arsenic; (I) Lindane vs.
E2_low; (J) Arsenic vs. E2_low. Black arrows indicate the positions of vtg1, and red arrows indicate the positions of cyp1a1; White boxes indicate the
positions of genes that did not pass the model test and could not be used to discriminate the corresponding two chemicals/concentrations; Pink
boxes indicate the positions of genes that passed the model test and could be used to discriminate the corresponding two chemicals/concentrations.
TCDD: 5 nM 2,3,7,8-tetrachlorodibenzo-p-dioxin; lindane: 100 mg/L lindane; arsenic: 15 mg/L arsenic; E2_low: 5 mg/L 17b estradiol; E2_high: 50 mg/L
17b-estradiol. The information of RDs and the corresponding genes can be found in Table S3.
doi:10.1371/journal.pone.0083954.g002
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known biomarkers, vtg1 and cyp1a1, has a value of 10.33 and they

could not correctly discriminate all of the five groups, particularly

the two concentration groups of E2 treatment (Figure 4B). All

other gene sets (3 or more genes) of the highest mean RD were also

capable of differentiating all the five chemical/concentration

groups correctly (Figure 3). In general, there was an increase of

mean RD with the number of genes in gene sets and the maximal

mean RD (19.153) was observed in the set with 50 genes, where

chemicals were also completely differentiated, including different

concentrations (Figure 4C).

Discussion

The environment is continuously loaded with natural and man-

made chemicals, and the effects of contaminant exposure to

human health have been extensively documented [33–37]. In

general, adverse effects of contaminants at population levels in

wildlife and human tend to be delayed; when the effects finally

become clear, the destructive processes may have been beyond the

point where it can be reversed by available remedial actions [2].

Therefore, various biomonitoring methods have been developed

in the past few decades for the purpose of early warning. However,

most of these methods focused on one or several biological

parameters (e.g., biomarkers vitellogenins and cytochrome P450

enzymes 1A1) [38–43]. To search for more biomarker genes to

predict chemical contamination, it is common to use high

throughput and large scale analyses such as DNA microarray

and more recently RNA-seq platform [8,12,44]. However, the

methodology for selecting biomarkers from thousands of genes

could be a great challenge. Here we performed a proof-of-concept

study by selecting a handful of biomarker genes to develop a

practical assay with the aid of RD computational model.

Here four chemicals including E2, lindane, TCDD and arsenic

were tested. Both E2 and lindane exposures caused up-regulation

of hepatic vtg1 expression; similarly, treatment with TCDD or

arsenic showed up-regulation of cyp1a1 expression. These obser-

vations are consistent with previous studies [3–4,45], suggesting

the effectiveness of these chemical exposure experiments. In

general, exposure to different chemicals resulted in different gene

expression profiles in the seven biological pathways examined. For

example, both of E2 and lindane induced vtg1 expression, but E2

down-regulated the expression of essentially all of the selected

genes in the seven pathways while lindane up-regulated the

expression of most of these genes. Similarly, TCDD down-

regulated the expression of most of genes and arsenic up-regulated

many of the genes, especially in two pathways, oxidative_and_-

metabolic_stress and DNA_damage_and_repair, suggesting a

molecular basis for their discrimination.

In the current data set, we found that none of the 61 genes could

be used to correctly discriminate all of the five chemical/

concentration groups; thus, it has to rely on multiple gene sets

for successful discrimination, which should be the direction for

future development of multiple gene signatures for discrimination

of a multiple chemical groups, as previously proposed [8,12]. To

systematically select the best discriminator genes, here we

developed a computational model using RD to determine the

prediction power of each gene or in combination with others. First,

we demonstrated that there was a positive correlation between the

RD values and the discrimination of different treatments groups

(Fig. 2). In our data set, a minimum of two genes (e.g. vtg1 and

hspa5) could be used to successfully discriminate all of the five

chemical/concentration groups. There is a general increase of

mean RD values with the number of genes added to the gene set,

which indicate the power of using more genes for discriminating

more complicated data set. In our dataset, we also found that the

50-gene set had the highest mean RD values, indicating that there

is an optimal gene number used for the discrimination. From a

practical viewpoint, the used of minimal number of genes will

minimize workload and ease downstream data analysis. However,

using more genes, especially those representing different molecular

pathways, provides additional important biological information in

molecular-marker based biomonitoring.

In summary, the data of this study demonstrated chemicals that

induced similar responses in biomarker (e.g., TCDD and arsenic,

E2 and lindane) could cause different biological responses

depending on the parameters examined, and the use of parameter

sets consisting of different biological responses for biomonitoring

should be more appropriate. Furthermore, the computational

model based on RD may be useful to select appropriate gene sets

to develop efficient biomarker-based biomonitoring. Considering

the rapid, sensitive, convenient and high-throughput properties of

PCR, a PCR array including multiple gene parameters should be

a feasible tool to develop for biomonitoring of chemical exposure.

Supporting Information

Table S1 Sequences of primers for selected genes.

(DOC)

Table S2 mRNA expression profiles in the livers of
zebrafish after chemical exposure.

(DOC)

Table S3 Mean relative distances (MRDs) of individual
genes between chemicals.

(DOC)

Figure 3. Maximum mean RD of gene sets with different
numbers of genes among 5 chemicals/concentrations. Black
arrow indicates the position of gene set (50 genes), where maximum RD
was achieved. White box indicates the position of gene set (1 gene) that
did not pass the model test and could not be used to differentiate the
corresponding five chemicals/concentrations; Pink boxes indicate the
positions of gene sets that passed the model test and could be used to
differentiate the corresponding five chemicals/concentrations. The
information about maximum mean RDs and the corresponding
components of genes can be found in Table S4.
doi:10.1371/journal.pone.0083954.g003
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Table S4 Maximum mean relative distances (MMRDs)
of gene sets with different amounts of genes among 5
chemicals/concentrations and the corresponding com-
ponents of genes.
(DOC)

Program S1

(ZIP)
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