1,591 research outputs found

    Human motion tracking based on complementary Kalman filter

    Get PDF
    Miniaturized Inertial Measurement Unit (IMU) has been widely used in many motion capturing applications. In order to overcome stability and noise problems of IMU, a lot of efforts have been made to develop appropriate data fusion method to obtain reliable orientation estimation from IMU data. This article presents a method which models the errors of orientation, gyroscope bias and magnetic disturbance, and compensate the errors of state variables with complementary Kalman filter in a body motion capture system. Experimental results have shown that the proposed method significantly reduces the accumulative orientation estimation errors

    Irradiation-induced molecular dipole reorientation in inverted polymer solar cell using small molecular electron collection layer

    Full text link
    Inverted polymer solar cell is developed using small molecular tris(8-hydroxyquinolinato) aluminum (Alq3) as an electron collection layer between the active layer and indium-tin-oxide bottom cathode. Upon post-processing light irradiation by simulated solar illumination, the open-circuit voltage of the inverted device increases from 0.52 V to 0.60 V, resulting in the enhancement of the power conversion efficiency from 2.54 to 3.33 with negligible change in the short-circuit current. The performance improvement is attributed to the removal of surface potential due to irradiation-induced molecular dipole reorientation in the Alq3 layer, which reduces the charge transport barrier and improves the charge collection efficiency. © 2011 American Institute of Physics

    Efficient inverted polymer solar cells with thermal-evaporated and solution-processed small molecular electron extraction layer

    Full text link
    Efficient inverted polymer solar cell is reported upon by integrating with a small molecular 1,3,5-tri(phenyl-2-benzimi-dazolyl)-benzene (TPBi) electron extraction layer (EEL) at low processing temperature with thermal-evaporation and solution-process, resulting in the power conversion efficiencies of 3.70 and 3.47, respectively. The potential of TPBi as an efficient EEL is associated with its suitable electronic energy level for electron extraction and hole blocking from the active layer to the indium tin oxide cathode. © 2013 American Institute of Physics

    The generalized Hamiltonian model for the shafting transient analysis of the hydro turbine generating sets.

    Get PDF
    yesTraditional rotor dynamics mainly focuses on the steady- state behavior of the rotor and shafting. However, for systems such as hydro turbine generating sets (HTGS) where the control and regulation is frequently applied, the shafting safety and stabilization in transient state is then a key factor. The shafting transient state inevitably involves multiparameter domain, multifield coupling, and coupling dynamics. In this paper, the relative value form of the Lagrange function and its equations have been established by defining the base value system of the shafting. Takingthe rotation angle and the angular speed of the shafting as a link, the shafting lateral vibration and generator equations are integrated into the framework of generalized Hamiltonian system. The generalized Hamiltonian control model is thus established. To make the model more general, additional forces of the shafting are taken as the input excitation in proposed model. The control system of the HTGS can be easily connected with the shafting model to form the whole simulation system of the HTGS. It is expected that this study will build a foundation for the coupling dynamics theory using the generalized Hamiltonian theory to investigate coupling dynamic mechanism among the shafting vibration, transient of hydro turbine generating sets, and additional forces of the shafting.National Natural Science Foundation of China under Grant Nos. 51179079 and 5083900

    Antimony-doped graphene nanoplatelets

    Get PDF
    Heteroatom doping into the graphitic frameworks have been intensively studied for the development of metal-free electrocatalysts. However, the choice of heteroatoms is limited to non-metallic elements and heteroatom-doped graphitic materials do not satisfy commercial demands in terms of cost and stability. Here we realize doping semimetal antimony (Sb) at the edges of graphene nanoplatelets (GnPs) via a simple mechanochemical reaction between pristine graphite and solid Sb. The covalent bonding of the metalloid Sb with the graphitic carbon is visualized using atomic-resolution transmission electron microscopy. The Sb-doped GnPs display zero loss of electrocatalytic activity for oxygen reduction reaction even after 100,000 cycles. Density functional theory calculations indicate that the multiple oxidation states (Sb3+ and Sb5+) of Sb are responsible for the unusual electrochemical stability. Sb-doped GnPs may provide new insights and practical methods for designing stable carbon-based electrocatalystsclose0

    Controllable Synthesis of Magnesium Oxysulfate Nanowires with Different Morphologies

    Get PDF
    One-dimensional magnesium oxysulfate 5Mg(OH)2 · MgSO4 · 3H2O (abbreviated as 513MOS) with high aspect ratio has attracted much attention because of its distinctive properties from those of the conventional bulk materials. 513MOS nanowires with different morphologies were formed by varying the mixing ways of MgSO4 · 7H2O and NH4OH solutions at room temperature followed by hydrothermal treatment of the slurries at 150 °C for 12 h with or without EDTA. 513MOS nanowires with a length of 20–60 μm and a diameter of 60–300 nm were prepared in the case of double injection (adding MgSO4 · 7H2O and NH4OH solutions simultaneously into water), compared with the 513MOS with a length of 20–30 μm and a diameter of 0.3–1.7 μm in the case of the single injection (adding MgSO4 · 7H2O solution into NH4OH solution). The presence of minor amount of EDTA in the single injection method led to the formation of 513MOS nanowires with a length of 100–200 μm, a diameter of 80–200 nm, and an aspect ratio of up to 1000. The analysis of the experimental results indicated that the hydrothermal solutions with a lower supersaturation were favorable for the preferential growth of 513MOS nanowires along b axis

    Three-dimensional micromachining for microsystems by confined etchant layer technique

    Get PDF
    The micromachining of GaAs with three different truly three-dimensional (3D) molds were performed by the confined etchant layer technique (CELT). The etched patterns were found, approximately, to be the negative copy of the 3D molds. The general comparison of CELT with the existing micromachining techniques, such as two-dimensional (2D) projection lithography and electro-discharge machining, was made. The replication of the complex microstructures down to micrometer scale has been done by CELT in a single step. The photoresist layer, together with the procedures of exposure, developing and removal of resist, could be eliminated. The advantages of CELT over the existing lithography techniques and its potential applications are discussed briefly. It has been shown that CELT could be developed as a complementary technique to the existing micromachining techniques in fabricating microdevices for microsystems. (C) 2001 Elsevier Science Ltd. All rights reserved
    corecore