2,012 research outputs found

    Magnetism and Charge Dynamics in Iron Pnictides

    Full text link
    In a wide variety of materials, such as copper oxides, heavy fermions, organic salts, and the recently discovered iron pnictides, superconductivity is found in close proximity to a magnetically ordered state. The character of the proximate magnetic phase is thus believed to be crucial for understanding the differences between the various families of unconventional superconductors and the mechanism of superconductivity. Unlike the AFM order in cuprates, the nature of the magnetism and of the underlying electronic state in the iron pnictide superconductors is not well understood. Neither density functional theory nor models based on atomic physics and superexchange, account for the small size of the magnetic moment. Many low energy probes such as transport, STM and ARPES measured strong anisotropy of the electronic states akin to the nematic order in a liquid crystal, but there is no consensus on its physical origin, and a three dimensional picture of electronic states and its relations to the optical conductivity in the magnetic state is lacking. Using a first principles approach, we obtained the experimentally observed magnetic moment, optical conductivity, and the anisotropy of the electronic states. The theory connects ARPES, which measures one particle electronic states, optical spectroscopy, probing the particle hole excitations of the solid and neutron scattering which measures the magnetic moment. We predict a manifestation of the anisotropy in the optical conductivity, and we show that the magnetic phase arises from the paramagnetic phase by a large gain of the Hund's rule coupling energy and a smaller loss of kinetic energy, indicating that iron pnictides represent a new class of compounds where the nature of magnetism is intermediate between the spin density wave of almost independent particles, and the antiferromagnetic state of local moments.Comment: 4+ pages with additional one-page supplementary materia

    Shear Capacity of Monolithic Concrete Joints without Transverse Reinforcement.

    Get PDF
    yesA mechanism analysis based on the upper-bound theorem of concrete plasticity for monolithic concrete joints without transverse reinforcement is presented. Concrete is modelled as a rigid–perfectly plastic material obeying modified Coulomb failure criteria. Existing stress–strain relationships of concrete in compression and tension are comprehensively modified using the crack band theory to allow for concrete type and maximum aggregate size. Simple equations for the effectiveness factor for compression, ratio of effective tensile strength to compressive strength and angle of concrete friction are then mathematically developed using the modified stress–strain relationships of concrete. In addition, 12 push-off specimens made of all-lightweight, sand–lightweight and normal-weight concrete having maximum aggregate size between 4 and 19 mm were physically tested. Test results and mechanism analysis clearly showed that the shear capacity of monolithic concrete joints increased with the increase of the maximum aggregate size and dry density of concrete. The mean and standard deviation of the ratio between experimentally measured and predicted (by the mechanism analysis shear capacities) are 1·01 and 0·16 respectively, showing a closer prediction and less variation than Vecchio and Collins' equation, regardless of concrete type and maximum aggregate size

    Consistent model of magnetism in ferropnictides

    Get PDF
    The discovery of superconductivity in LaFeAsO introduced the ferropnictides as a major new class of superconducting compounds with critical temperatures second only to cuprates. The presence of magnetic iron makes ferropnictides radically different from cuprates. Antiferromagnetism of the parent compounds strongly suggests that superconductivity and magnetism are closely related. However, the character of magnetic interactions and spin fluctuations in ferropnictides, in spite of vigorous efforts, has until now resisted understanding within any conventional model of magnetism. Here we show that the most puzzling features can be naturally reconciled within a rather simple effective spin model with biquadratic interactions, which is consistent with electronic structure calculations. By going beyond the Heisenberg model, this description explains numerous experimentally observed properties, including the peculiarities of the spin wave spectrum, thin domain walls, crossover from first to second order phase transition under doping in some compounds, and offers new insight in the occurrence of the nematic phase above the antiferromagnetic phase transition.Comment: 5 pages, 3 figures, revtex

    Structural and magnetic phase diagram of CeFeAsO1-xFx and its relationship to high-temperature superconductivity

    Full text link
    We use neutron scattering to study the structural and magnetic phase transitions in the iron pnictides CeFeAsO1-xFx as the system is tuned from a semimetal to a high-transition-temperature (high-Tc) superconductor through Fluorine (F) doping x. In the undoped state, CeFeAsO develops a structural lattice distortion followed by a stripe like commensurate antiferromagnetic order with decreasing temperature. With increasing Fluorine doping, the structural phase transition decreases gradually while the antiferromagnetic order is suppressed before the appearance of superconductivity, resulting an electronic phase diagram remarkably similar to that of the high-Tc copper oxides. Comparison of the structural evolution of CeFeAsO1-xFx with other Fe-based superconductors reveals that the effective electronic band width decreases systematically for materials with higher Tc. The results suggest that electron correlation effects are important for the mechanism of high-Tc superconductivity in these Fe pnictides.Comment: 19 pages, 5 figure

    Quasi-radial growth of metal tube on si nanowires template

    Get PDF
    It is reported in this article that Si nanowires can be employed as a positive template for the controllable electrochemical deposition of noble metal tube. The deposited tube exhibits good crystallinity. Scanning electron microscope and transmission electron microscope characterizations are conducted to reveal the growth process of metal tube, showing that the metal tube grows quasi-radially on the wall of Si nanowire. The quasi-radial growth of metal enables the fabrication of thickness-defined metal tube via changing deposition time. Inner-diameter-defined metal tube is achieved by choosing Si nanowires with desired diameter as a template. Metal tubes with inner diameters ranging from 1 μm to sub-50 nm are fabricated

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics
    corecore