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ABSTRACT 

A mechanism analysis based on upper-bound theorem of concrete plasticity for monolithic concrete 

joints without transverse reinforcement is presented. Concrete is modelled as a rigid perfectly 

plastic material obeying a modified Coulomb failure criteria. Existing stress-strain relationships of 

concrete in compression and tension are comprehensively modified using the crack band theory to 

consider the effect of concrete type and maximum aggregate size on the profile of the stress-strain 

curves. Simple equations for the effectiveness factor for compression, ratio of effective tensile to 

compressive strengths and angle of concrete friction are then developed using the modified stress-

strain relationships of concrete.  In addition, 12 push-off specimens made of all-lightweight, sand-

lightweight and normal weight concrete having maximum aggregate size between 4 and 19 mm 

were physically tested. Test results and mechanism analysis clearly showed that the shear capacity 

of monolithic concrete joints increased with the increase of the maximum aggregate size and dry 

density of concrete. The mean and standard deviation of the ratio between experimentally measured 

and predicted by the mechanism analysis shear capacities are 1.27 and 0.18, respectively, showing a 

slightly closer prediction and less variation than Vecchio and Collins’ equation, regardless of the 

concrete type and maximum aggregate size. 

 

Keywords: monolithic concrete joints, shear capacity, mechanism analysis, lightweight concrete, 

aggregate size. 

 

INTRODUCTION 

The monolithic concrete joints commonly occur at the interface between columns and corbels, 

shear walls and columns, and shear keys. Their structural performance is mainly governed by shear 

transferred across the shear plane between the two members due to aggregate interlock or shear 

friction [1, 2]. Mattock and Hawkins [3] concluded that the resistance of lightweight concrete shear 
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planes to slip along shear cracks is less than that of normal weight concrete, as the crack face of 

lightweight concrete is smoother than that of normal weight concrete. Other experimental data [4] 

also showed that shear cracks in normal strength, normal weight aggregates concrete propagate 

through cement matrix around aggregate particles, while these in lightweight aggregate concrete 

mainly penetrate through coarse aggregate particles. As a result, Sherwood et al. [5] pointed out that 

shear transferred by aggregate interlock would be negligible in lightweight concrete. However, 

experimental investigations to evaluate the reduced shear capacity of lightweight concrete joints are 

very scarce. 

ACI 318-08 provision [6] recommended the shear friction model [7] for concrete joint design and 

also specified a modification factor for lightweight concrete, based on experimental data of simply 

supported beams [8], to account for the reduced shear strength, friction properties, and splitting 

resistance of lightweight concrete compared with normal weight concrete of the same compressive 

strength. Yang et al. [4] concluded that the modification factor for lightweight concrete continuous 

beams in ACI 318-08 is potentially un-conservative and, as a result, proposed the use of maximum 

aggregate size and dry density of concrete in the modification factor calculation. In particular, ACI 

318-08 provision and the empirical equation proposed by Mattock [9] neglect the concrete shear 

capacity; which can result in transverse reinforcement congestion at concrete joints. Therefore, a 

rational approach would be required to explain the shear transfer mechanism in concrete joints, 

considering the effect of strength and size of aggregates. 

In the present study, a mechanism analysis is developed using the upper-bound theorem of 

concrete plasticity in order to predict the shear transfer capacity of concrete in monolithic joints. 12 

push-off specimens without transverse reinforcement were also tested according to the variation of 

the concrete type and maximum aggregate size. The measured shear capacity of the concrete joints 

tested is compared with the predictions obtained from the mechanism analysis and empirical 

formulas proposed by Vecchio and Collins [10]. 
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SIGNIFICANCE OF RESEARCH 

Although concrete cohesion and aggregate interlock along the shear plane of monolithic concrete 

joints have a significant influence on the concrete shear capacity, ACI 318-08 provision and 

empirical formulas proposed by Mattock based on shear friction theory neglect the concrete 

contribution along the shear plane of such joints.  A mechanism analysis is developed to identify the 

shear transfer of concrete in monolithic joints as the inclusion of concrete shear capacity in joint 

design would produce a proper arrangement of shear-friction reinforcement. Test results and 

mechanism analysis showed that the shear capacity of the shear plane of concrete joints increased 

with the increase of maximum aggregate size. 

 

REVIEW OF EXISTING MODELS 

Currently available models to evaluate the shear capacity of concrete joints are generally based on 

the shear friction theory [6] or empirical regression analysis of experimental data [9, 10]. Although, 

more sophisticated models [11, 12] were also developed, they are complicated and tedious to follow.  

Existing simple formulas for estimating the shear capacity of concrete joints are summarized below. 

ACI 318-08 [6] 

ACI 318-08 specified the shear capacity nV  of monolithic concrete joints without axial force 

based on the shear friction theory as: 

 ffyfn fAV  cossin4.1           (1) 

where fA  and yf = total area and yield strength of transverse reinforcement across the shear plane, 

respectively, f = angle between transverse reinforcement and shear plane, and  = modification 

factor recommended to be 0.75 for all-lightweight concrete, 0.85 for sand-lightweight concrete and 

1.0 for normal weight concrete. When the average splitting tensile strength spf  is specified, the 
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modification factor is alternatively obtained from   0.156.0/ '  csp ff . As Eq. (1) becomes un-

conservative for few cases of normal weight concrete having concrete strength above 28 MPa or 

over-reinforced shear plane joints [3, 9], the code specifies that the shear capacity of monolithic 

concrete joints shall not exceed an upper limit  
maxnV  (in N) as given below: 

 
maxnV = Min of }2.0{ '

cc Af ,   }08.03.3{ '

cc Af or }11{ cA  for normal weight concrete (2 a) 

 
maxnV = Min of }2.0{ '

cc Af or }5.5{ cA  for lightweight concrete (2 b) 

where '

cf = concrete compressive strength (in MPa), and cA = area of concrete section resisting 

shear (in mm
2
). Eq. (2) indicates that the upper limit is governed by cc Af '2.0  when compressive 

strength is less than 28 MPa, regardless of concrete type, while it is governed by   cc Af '08.03.3   

for normal weight concrete when '

cf  is between 28 MPa and 100 MPa. Eqs (1) and (2) also imply 

that there is no concrete joint capacity gain for any increase of the transverse reinforcement index 

'

c

yf

f

f
 beyond 

ff  cossin4.1

2.0


 for concrete strength less than 28 MPa, where 












c

f

f
A

A
 = 

transverse reinforcement ratio. The shear friction model ignores concrete cohesion and assumes that 

the applied shear force is entirely transferred by friction, as a result, no shear transfer capacity of 

concrete along shear plane is considered. This indicates that ACI 318-08 would be too conservative 

for high-strength concrete joints, as pointed out by Mattock [9]. 

Mattock [9] 

Mattock [3] proposed that cohesion together with friction should be considered to rationally 

evaluate the shear capacity of concrete joints having transverse reinforcement perpendicular to the 

shear plane. Based on the basic equation form proposed in 1972, Mattock [9] empirically developed 

the shear capacity nV  of monolithic concrete joints without axial force as below: 
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yvfvcn fAAKV 8.01    Min. of cc AfK '

2  or cAK3  for 45.1/1 cyvfv AKfA   (3.a) 

)(25.2 yvfvn fAV   for 45.1/1 cyvfv AKfA   (3.b) 

where fvA  and yvf = total area and yield strength of the transverse reinforcement perpendicular to 

the shear plane, respectively, 1K , 2K , and 3K = empirical constants determined from regression 

analysis of 199 push-off test data with '

cf  ranging from 17 MPa to 100 MPa. The constants 1K , 2K , 

and 3K  are )MPa 5.5(1.0 ' cf , 0.3, and 16.6 MPa, respectively, for normal weight concrete, 1.38, 

0.2 and 8.3 MPa, respectively, for all-lightweight concrete, and 1.73, 0.2 and 8.3 MPa, respectively, 

for sand-lightweight concrete. Mattock’s equation also ignores the shear transfer contribution of 

concrete when 45.1/1Kf yvfv  , where 











c

fv

fv
A

A
 = ratio of transverse reinforcement 

perpendicular to the shear plane. 

Vecchio and Collins [10] 

Walraven [12] concluded that the shear force transferred along shear crack is significantly 

dependent on the crack width w  and maximum aggregate size ad  based on a comprehensive testing 

of 88 push-off concrete specimens. Vecchio and Collins fitted the test data carried out by Walraven 

and proposed a shear capacity formula considering only concrete contribution as follows: 

c

a

c

c

n A

d

w

f
V

















16

24
3.0

18.0 '

          (4) 

where the maximum crack width cw  at failure of concrete element and maximum aggregate size ad  

are in mm. The maximum crack width cw  can be obtained from: 

xc sw 1             (5) 
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where 1 = principal tensile strain along the shear plane, and xs = spacing of cracks. For a shear 

plane under pure shear stress, 1  can be obtained from 2/xy , where xy = shear strain along the 

shear plane. As the failure crack of monolithic concrete joint is locally formed along the shear plane 

[2, 3], the spacing xs  of cracks can be replaced by the crack band width ch  [13]. 

 

MECHANISM ANALYSIS 

Failure mechanism 

Figure 1 shows a typical failure plane of a monolithic concrete joint under shear [2, 3]. At failure, 

the concrete joint can be idealized as composed of two rigid blocks separated by a failure surface. 

One rigid block has two translational and rotational displacement components relative to the other 

rigid block. Therefore, one rigid block can be assumed to be rotating about an instantaneous center 

(IC) as shown in Fig. 1. For the idealized failure mechanism, the lateral (out of plane) strains are 

prevented. Hence, the concrete joint at failure can be regarded as a plane strain problem [14]. 

Upper bound solution 

The upper bound analysis uses the energy principle to calculate the shear capacity for the 

kinematically admissible failure mechanism explained above. The external work EW  of the vertical 

applied load V at failure is: 

icE XVW             (6) 

where  = relative rotational displacement of rigid block I to rigid block II about IC, and icX = 

horizontal coordinate of IC as shown in Fig. 1. 

For a plane strain problem, the internal energy IW dissipated in concrete along the hyperbolic 

failure surface is estimated from the following general formula [14]: 

ccI AmlfW ]sin[
2

1 *            (7) 
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where 




sin1

sin
21

*

*




c

t

f

f
l , 

sin1

1
21

*

*




c

t

f

f
m , *

cf  and *

tf = effective compressive and tensile 

strengths of concrete, respectively,  = angle between the relative displacement   at the chord 

midpoint and the failure plane chord, and  = angle of concrete friction. The relative displacement 

  can be also written as 












cos

icX
, as presented in Fig. 1. 

Equating the total internal energy dissipated in concrete to the external work done, the shear 

capacity of monolithic concrete joints without transverse reinforcement can be derived in the 

following form: 

ccn AmlfV ]sin[
cos

1

2

1 * 


         (8) 

According to the upper-bound theorem, the collapse occurs at the least strength. The shear 

capacity of concrete joints without transverse reinforcement varies with the change in the angle  , 

as given in the above Eq. (8). Hence, the determination of the minimum shear capacity could be 

achieved by considering the differential equation, 0





nV

, which gives: 
















 

yyx

x

22

1tan2         (9) 

where lmx / , lmly /22  . 

Modelling of concrete 

Concrete can be regarded as a rigid perfectly plastic material obeying a modified Coulomb failure 

criteria with effective compressive *

cf  and tensile *

tf  strengths [14]. As concrete is not a perfectly 

plastic material but a typical brittle material, effectiveness factor for compression can be determined 

from equating the area of the rigid-perfectly plastic stress-strain curve to that of the actual stress-
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strain curve [17], as shown in Fig. 2. Therefore, the effectiveness factor c  for concrete in 

compression can be defined as below [15]: 

 
























1

0 ''

*

u

c

c

c

c

c

c d
ff

f




          (10) 

where c = compressive stress corresponding to compressive strain c , and u = ultimate strain in 

compression. 

Similarly, the effectiveness factor t  for concrete in tension can be defined as below: 

 





















1

0

*

tu

t

t

t

t

t
t d

ff

f




          (11) 

where t = tensile stress corresponding to tensile strain of t , and tu = ultimate tensile strain. 

Stress-strain relationships of concrete 

The shape of concrete compressive stress-strain curve is strongly affected by the concrete strength 

and elastic modulus of aggregates [1]. For instance, a closer to linear ascending branch and steeper 

descending branch are observed in high strength concrete than normal strength concrete [1]. In 

addition, a lower elastic modulus and more brittle descending branch are observed in lightweight 

concrete than normal weight concrete of the same compressive strength, as depicted in Fig. 3. CEB-

FIP [16] also recommends that stresses below 0.5 '

cf  on the descending branch would be neglected. 

The compressive stress-strain relationship generalized by Thorenfeldt et al. [17] is modified to 

accommodate the above mentioned characteristics as follows: 

 

 
'

0

0

/1

/
cnk

c

c
c f

n

n







          (12) 

where n = a curve-fitting parameter, 
























1

'

0
n

n

E

f

c

c = strain corresponding to the peak stress '

cf , 

cE = concrete elastic modulus and k =factor controlling the slopes of the ascending and descending 
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branches of the stress-strain curve. The modulus of elasticity of concrete is assumed to follow the 

equation specified in ACI 318-08 below: 

  '5.1043.0 cc fE   (MPa)                (13) 

where  = dry density of concrete (in kg/m
3
). To reflect the lower elastic modulus and more brittle 

failure of lightweight concrete, n  is associated with a correction factor E  for lightweight concrete 

specified in EC 2 [18] as below: 

E

cf
n



1

2.17
8.0

'










          (13) 

0.1
2200

2












E                  (14) 

The factor k  in Eq. (12) is obtained from 

0.1k  for 0.1/ 0  c                    (15 a) 

0.162/67.0 '  cfk  for 0.1/ 0  c                  (15 b) 

The behavior of concrete in tension without a crack is commonly assumed to be linear elastic, 

while that after cracking is significantly dependent on the crack opening size. According to the 

cohesive crack model [13], concrete can transfer tensile stresses until the crack width reaches a 

certain limit. This implies that the tensile strength drops to zero when the crack is completely 

formed, as a result, tu  can be assumed as the strain corresponding to 0tf , as shown in Fig. 2. 

The propagation of crack width is also affected by the contact area between aggregates and cement 

matrix [12]. Bažant and Sun [19] showed that the aggregate size factor 0/ cdaa   should be 

considered to represent the aggregate interlock contribution to the shear stress transfer along 

diagonal tensile cracks, where  mm 250 c = reference size of aggregate. This indicates that tensile 

stresses at an arbitrary crack opening decrease with the decrease of the maximum aggregate size. In 

the present study, based on the function of crack opening derived experimentally by Hordijk [20] 
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modified for the effect of aggregate size, the tensile stress-strain relationship of concrete is 

represented in the following form (see Fig. 4): 

tct E    for 0.1/ 0 tt          (16 a) 

    at

tu

t

tu

t

tu

t

t fcccc 











 


















































 2

3

12

3

1 exp1exp1  for 0.1/ 0 tt   (16 b) 

where 











c

t

t
E

f
0 = strain corresponding to tf , and 1c  and 2c  = 3.0 and -6.93, respectively, as 

empirical constants. The tensile strength of lightweight concrete is commonly lower than that of 

normal weight concrete of the same compressive strength [18]. Therefore, CEB-FIP equation [16] to 

predict the tensile strength of concrete is associated with a correction factor for reduced tensile 

strength of lightweight concrete specified in EC 2 [18] as follows: 

   1

' 10/1ln12.2  ct ff                       ( tf   in MPa)     (17) 

  0.1/22000.60.41            (18) 

From the tensile stress-crack opening relationship, the ultimate tensile strain tu  corresponding to 

0tf  can be calculated from:  

c

c
tu

h

w
             (19) 

where ch = crack band width and cw = crack opening at the complete release of tensile stresses, 

which can be obtained from tf fG /14.5  [20], fG = concrete fracture energy. As the concrete 

fracture energy identifies the amount of energy required for crack growth, fracture energy of 

lightweight concrete would be lower than that of normal weight concrete due to the reduced friction 

properties and splitting resistance. The fracture energy is significantly influenced by not only 

concrete strength but also various characteristics of aggregates. However, very few [16] equations 

for concrete fracture energy are available in the literature and, therefore, the concrete fracture energy 
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equations specified in CEB-FIP associated with a correction factor E  of EC 2 are adopted in the 

present study as below: 

  7.0' / cocfoEf ffGG    for 80' cf MPa       (20 a) 

foEf GG 3.4   for 80' cf MPa        (20 b) 

where cof  (= 10 MPa)= reference concrete strength, and foG = basic fracture energy (in N/mm). 

CEB-FIP proposes different values of foG  based on the maximum aggregate size ad  of concrete. 

The crack band width ch  cannot be determined from fracture tests in which a single crack is formed, 

yet it can be identified as a zone where the crack is forced to be distributed [13].  

From a numerical calculation using the crack band model, Bažant and Planas [13] showed that 

the crack band width can be simply expressed as follows: 

 tc

ch
c

EE

l
h

/1
            (21) 

where 














2

t

fc

ch
f

GE
l = characteristic length corresponding to half the length of a concrete specimen 

subjected to axial tension in which just enough elastic strain energy is stored to create one complete 

fracture surface, and tE = softening modulus at peak tensile strength, which can be evaluated from 

Eq. (16b). 

Effectiveness factor for compression and effective strength ratio 

The effectiveness factor c  of concrete in compression is significantly affected by the 

compressive strength and dry density of concrete, yet independent of the maximum aggregate size, 

as presented in Eq. (12) and Fig. 3. A nonlinear multiple regression (NLMR) analysis is carried out 

for the results obtained from Eq. (10) for c  against concrete having '

cf  between 20 and 80 MPa 

and   between 1200 and 2200 kg/m
3
 to obtain a simple equation for c . Different influencing 
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parameters were combined and tuned repeatedly by trial and error approach using SPSS software 

[21] until a relatively higher correlation coefficient 2R  (=0.97) is achieved. Overall, as plotted in 

Fig. 5, c  can be expressed in the following form: 

   12.0' /8.0


 Ecocc ffv            (22) 

On the other hand, the effective strength ratio ** / ct ff   required for the estimation of parameters l  

and m  is dependent on '

cf  and   as well as ad , as the effectiveness factor t  for concrete in 

tension is significantly affected by these parameters. From a NLMR analysis of the results obtained 

from Eqs. (10) and (11) against concrete having '

cf  between 20 and 80 MPa,   between 1200 and 

2200 kg/m
3
 and ad  between 4 and 25 mm, ** / ct ff   plotted in Fig. 6 can be simply written in the 

following form: 

 
4.0

2.0

6.0

0

'

*

* /
03.0


















Eco

ac

c

t

f

dcf

f

f


         (23) 

Angle of concrete friction 

As plotted in Fig. 7, the condition for sliding failure of a modified Coulomb material under pure 

shear stress [14] is  

   cos
2

1
31  c           (23) 

where 1  and 3 = principal stresses, which equal to   under pure shear stress  , and c = 

cohesion of concrete. The cohesion of concrete with sliding failure is expressed as kfc 2/*  [14], 

where the quantity k  is defined by 




sin1

sin1




. Hence, the shear stress in the shear plane of concrete 

joint can be expressed as follows: 

k

f

A

V c

c 2

cos* 
             (24) 
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At failure of concrete joints, shear stresses obtained from Eq. (24) should be the same as that 

calculated from Eq. (8) and consequently the below condition is obtained: 





cos

sincos ml

k


            (25) 

The angle   of concrete friction is plotted against ** / ct ff  in Fig. 8. Therefore,   can be 

expressed as a function of ** / ct ff  using a simple linear regression analysis as given below. 
















*

*

7.10exp80
c

t

f

f
           (26) 

EXPERIMENTAL VERIFICATION 

Details of test specimens 

Twelve push-off specimens made of all-lightweight, sand-lightweight and normal weight 

concrete were tested under pure shear as shown in Fig. 9. The maximum aggregate size ad  varied 

from 4 mm to 19 mm in each concrete type group. All specimens tested had the same geometrical 

dimensions. The length and depth of test zone of specimens were 200 mm and 120 mm, respectively, 

producing a section area cA  of shear plane of 24000 mm
2
. All test specimens had no transverse 

reinforcement. The concrete mix proportions of each specimen are presented in Table 1. The 

specimen notation listed in Table 1 identifies the type of concrete (“A” for all-lightweight concrete, 

“S” for sand-lightweight concrete and “N” for normal weight concrete) and the maximum aggregate 

size, respectively. For example, A8 is an all-lightweight concrete specimen having a maximum 

aggregate size of 8mm. 

All push-off specimens were tested to failure under concentric load acting as a pure shear in the 

shear plane of the test zone as shown in Fig. 9. The top and bottom stubs of the test specimens were 

strengthened with carbon fiber sheets to prevent bearing failure at the interfaces between the test 
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zone and both stubs. The shear strain in the shear plane was measured by a strain rosette consisted 

of three 75 mm electrical resistance (ERS) strain gages, as shown in Fig. 9. 

Test results 

All test specimens failed along the shear plane as idealized in the mechanism analysis presented 

earlier in the paper. The shear stiffness of push-off specimens increased with the increase of ad , 

regardless of the type of concrete as shown in Fig. 10. In addition, slightly higher shear stiffness 

developed in normal weight concrete (NWC) specimens than lightweight concrete (LWC) 

specimens, as depicted in Fig. 10. Table 2 presents the shear capacity nV  (kN), shear strain xy  and 

normalized shear stresses 
'

c

n

f


 of test specimens. The normalized shear capacity '/ cn f  of the 

shear plane is also plotted against the maximum aggregate size in Fig. 11. The normalized shear 

capacity 
'/ cn f  of the shear plane is also significantly affected by the type of concrete and ad , 

though similar values of 
'/ cn f  were observed for specimens A-4, S-4, and N-4 whose concrete 

had ad  of 4 mm as shown in Fig. 11. The normalized shear capacity is commonly increased with 

the increase of ad , showing the highest increasing rate in NWC specimens and similar increasing 

rate in ALWC and SLWC specimens, as given in Table 2 and Fig. 11. At the same ad , '/ cn f  of 

NWC specimens was higher than that of SLWC specimen which, in turn, is higher than that of 

ALWC specimen. The measured shear capacity of all specimens was much lower than the 

maximum values obtained from Eq. (2) specified in ACI 318-08, as given in Table 2, as no 

transverse reinforcement was provided in the test specimens. 

Comparisons of measured and predicted shear capacities 

The shear capacity of push-off specimens tested was predicted using the extended version of 

Vecchio and Collins’ method (Eqs. 4 and 5) and mechanism analysis developed in the present study 
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as listed in Table 2. As the equations proposed by ACI 318-08 and Mattock neglect the concrete 

shear capacity of monolithic joint without transverse reinforcement, no predictions by these 

equations are presented in Table 2. The shear capacity predicted from Vecchio and Collins’ 

equation is minimally affected by the maximum aggregate size and dry density of concrete as listed 

in Table 2. The means and standard deviations of the ratio between measured and predicted by 

Vecchio and Collins’ equation shear capacities are 0.76 and 0.14 for ALWC, 0.84 and 0.11 for 

SLWC and 1.07 and 0.35 for NWC specimens, respectively, whereas the corresponding statistical 

parameters of the ratio between measured and predicted by the mechanism analysis shear capacities 

are 1.22 and 0.13 for ALWC, 1.25 and 0.15 for SLWC and 1.35 and 0.23 for NWC specimens, 

respectively. Vecchio and Collins’ equation generally overestimates the shear capacity of monolithic 

concrete joints for 13ad  mm. On the other hand, the predictions obtained from the mechanism 

analysis are generally lower than the measured shear capacities. However, the deviations of the ratio 

between measured and predicted by the mechanism analysis shear capacities were slightly smaller 

than these from Vecchio and Collins’ equation, regardless of concrete type and maximum aggregate 

size ad . Therefore, the proposed mechanism analysis can be conservatively applicable for 

predicting the concrete shear capacity of monolithic concrete joints without transverse 

reinforcement. 

 

CONCLUSIONS 

A mechanism analysis based on upper-bound theorem is developed to predict the concrete shear 

capacity of monolithic concrete joints without transverse reinforcement. The concrete is identified 

as a rigid perfectly plastic material obeying a modified Coulomb failure criteria. Simple equations 

for the effectiveness factor for compression, ratio of effective strength and angle of concrete friction 

are proposed using modified stress-strain relationships of concrete in compression and tension. In 
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addition, 12 push-off specimens made of all-lightweight, sand-lightweight and normal weight 

concrete having maximum aggregate sizes of 4, 8, 13 and 19mm, without transverse reinforcement 

were tested. The shear capacity measured in the failure shear plane of test specimens is compared 

with predictions obtained from the proposed mechanism analysis and extended version of Vecchio 

and Collins’ equation. Based on the analytical solution and test results, the following conclusions 

may be drawn: 

1. The normalized shear capacity of the shear plane of push-off specimens is commonly 

increased with the increase of maximum aggregate size. The normal weight concrete 

specimens exhibited the largest increasing rate of the normalized shear capacity, whereas all-

lightweight and sand-lightweight concrete specimens had a similar increasing rate of the 

normalized shear capacity. 

2. The equation proposed by Vecchio and Collins generally overestimates the shear capacity of 

monolithic concrete joints having maximum aggregate size above 13 mm. In particular, 

Vecchio and Collins’ equation minimally considers the effect of maximum aggregate size 

and dry density of concrete on the shear transfer capacity of concrete. 

3. The mechanism analysis predictions are generally lower than the measured shear capacity 

and, therefore, can be conservatively applicable for the prediction of the concrete shear 

capacity of monolithic concrete joints. 
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NOTATION 

cA  = section area of shear plane 

fA  = area of transverse reinforcement across shear plane 

ad  = maximum size of aggregate 

c  = cohesion of concrete 

0c  = reference aggregate size (=25 mm) 

'

cf  = concrete compressive strength 

cof  = reference concrete compressive strength (=10 MPa) 

*

cf  = effective compressive strength of concrete 

tf  = concrete tensile strength 

*

tf  = effective tensile strength of concrete 

cE  = modulus of elasticity of concrete 

tE  = softening modulus at peak tensile strength of concrete 

fG  = concrete fracture energy 

ch  = width of crack band 

nV  = shear capacity in shear plane of concrete joint 

EW  = external work done by applied load 

IW  = concrete internal energy dissipated in failure surface 

cw  = maximum crack width in shear plane 

  = angle between the relative displacement and failure surface 

f  = angle between transverse reinforcement and shear plane 
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xy  = shear strain in shear plane 

  = relative displacement vector 

u  = ultimate strain of concrete in compression 

tu  = ultimate strain of concrete in tension 

c  = effectiveness factor for concrete compressive strength 

t  = effectiveness factor for concrete tensile strength 

  = dry density of concreteo 

f  = transverse reinforcement ratio 

  = shear stress in shear plane 

  = friction angle of concrete 

  = relative rotational displacement of rigid block I to rigid block II about IC. 
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Table 1 – Concrete mix proportions 

Specimen 
Type of 

concrete 

ad  

(mm) 
BW /  AS /  

Unit weight
#
 (kg/m

3
) 

spR  

(%) W  C  SF  F  G  

A4 

All-

lightweight 

4 0.4 - 139  348  0  1043 0  0.75 

A8 8 0.36 

0.4 

222  548  61  320 439  0.21  

A13 13 0.35 212  545  61  327 448  0.45 

A19 19 0.30 173  518  58  326 447  0.50 

S4 

Sand-

lightweight 

4 0.52 - 260  495  

0  

1486
* 
 0  0.00  

S8 8 0.35 

0.4 

198  569  634
* 
  474  0.19 

S13 13 0.36 203  556  633 
* 
 473  0.15 

S19 19 0.33 171  525  625
* 
  467  0.21  

N4 

Normal-

weight 

4 0.50 - 250  502  1505
* 
  0  0.00  

N8 8 0.65 

0.4 

201  309  715
* 
  1097

*
 0.20 

N13 13 0.63 193  309  723 
* 
 1110

* 
  0.13 

N19 19 0.60 186  309  731
* 
  1122

* 
  0.13 

Note: ad = maximum size of aggregate, BW / = water-to-binder ratio by weight, AS / = fine 

aggregate-to-total aggregate ratio by volume, and spR = ratio of super-plasticizer to binder by 

weight. 

# W , C , SF , F , and G  refer to water, ordinary Portland cement, silica fume, fine aggregate, and 

coarse aggregate, respectively. 

* indicates natural normal weight aggregates. 
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Table 2 – Summary of test results and comparisons of measured and predicted shear capacities. 

Specimen 

'

cf  

(MPa) 

  

(kg/m
3
) 

Test results at failure ACI 318-08 
Vecchio and 

Collins 
Mechanism analysis 

 

 
.Pr

.

en

Expn

V

V
 

nV  

(kN) 

xy  

(×10
-6

) 
'

c

n

f


 

 
maxnV  

(kN) 

cw  

(mm) 

nV  

(kN) 
c  

*

*

c

t

f

f
 

  

(deg.) 

  

(deg.) 

nV  

(kN) 

Vecchio 

and Collins 

Mechanism 

analysis 

A4 31.2 1510 42.4 590 0.317 
149.6 

0.022 73.9 0.638 0.012 70.2 73.7 40.9 0.574 1.038 

A8 36.2 1540 63.2 699 0.438 
173.9 

0.016 82.2 0.629 0.014 69.1 72.8 49.5 0.769 1.278 

A13 31.8 1551 61.0 569 0.450 
152.9 

0.014 78.2 0.640 0.016 67.3 71.3 48.2 0.779 1.265 

A19 37.4 1514 73.4 650 0.500 
179.4 

0.035 81.5 0.624 0.017 67.0 71.1 55.8 0.901 1.315 

S4 34.8 2130 46.1 520 0.325 
167.0 

0.043 72.5 0.683 0.012 70.1 73.6 49.2 0.636 0.937 

S8 29.9 1841 61.2 550 0.466 
143.6 

0.052 67.1 0.672 0.015 68.0 71.9 46.0 0.913 1.331 

S13 36.0 1824 68.1 700 0.473 
172.8 

0.032 79.4 0.656 0.016 67.5 71.5 55.1 0.858 1.236 

S19 33.0 1772 76.6 620 0.555 
158.3 

0.025 78.3 0.658 0.018 66.1 70.4 54.0 0.978 1.417 

N4 25.8 2157 40.8 440 0.335 
123.8 

0.033 64.7 0.711 0.014 68.9 72.6 40.2 0.631 1.014 

N8 29.6 2233 67.0 543 0.513 
135.9 

0.048 67.5 0.702 0.016 67.6 71.6 48.3 0.991 1.386 

N13 27.4 2253 72.2 520 0.575 
131.5 

0.092 60.1 0.709 0.018 65.8 70.3 48.8 1.201 1.481 

N19 36.2 2273 93.4 619 0.646 
148.8 

0.152 64.3 0.685 0.018 66.1 70.5 61.7 1.452 1.513 
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Fig. 1–Idealized failure plane of monolithic concrete joints. 
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Fig. 2–Equivalent rigid-perfectly plastic stress-strain curve of concrete. 
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Fig. 3–Typical compressive stress-strain curves of concrete generalized by Eq. (12). 
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Fig. 4–Typical tensile stress-strain curves of concrete generalized by Eq. (16) 
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Fig. 5–Regression analysis for cv  
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Fig. 6–Regression analysis for 
** / ct ff  
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Fig. 7–Mohr’s circle for sliding failure under pure shear. 

 

 

50

55

60

65

70

75

80

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

f t
*
/f c

*

A
n

g
le

 o
f 

fr
ic

ti
o

n
, 
  

 (
d

eg
re

e)

Best fit curve

y=80e
-10.7x

R
2
=0.99

 

Fig. 8–Relation of 
** / ct ff  and   
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Fig. 9–Details of push-off specimen tested (All dimensions are in mm). 
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Fig. 10– Shear stress versus shear strain in shear plane of push-off specimens tested. 
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Fig. 11 – 
'/ cn f  versus ad . 


