319 research outputs found

    Infertility treatment outcome in sub groups of obese population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity is a common disorder with a negative impact on IVF treatment outcome. It is not clear whether morbidly obese women (BMI >= 35 kg/m2) respond to treatment differently as compared to obese women (BMI = 30–34.9 kg/m2) in IVF. Our aim was to compare the outcome of IVF or ICSI treatments in obese patients to that in morbidly obese patients.</p> <p>Methods</p> <p>This retrospective cohort study was conducted in a tertiary care centre. Patients inclusion criteria were as follows; BMI ≥ 30, age 20–40 years old, first cycle IVF/ICSI treatment with primary infertility and long follicular pituitary down regulation protocol.</p> <p>Results</p> <p>A total of 406 obese patients (group A) and 141 morbidly obese patients (group B) satisfied the inclusion criteria. Average BMI was 32.1 ± 1.38 kg/m2 for group A versus 37.7 ± 2.99 kg/m<sup>2 </sup>for group B. Patient age, cause of infertility, duration of stimulation, fertilization rate, and number of transferred embryos were similar in both groups. Compared to group A, group B had fewer medium size and mature follicles (14 vs. 16), fewer oocytes collected (7 vs. 9) and required higher doses of HMG (46.2 vs. 38.5 amps). There was also a higher cancellation rate in group B (28.3% vs. 19%) and lower clinical pregnancy rate per started cycle (19.9% vs. 28.6%).</p> <p>Conclusion</p> <p>In a homogenous infertile and obese patient population stratified according to their BMI, morbid obesity is associated with unfavorable IVF/ICSI cycle outcome as evidenced by lower pregnancy rates. It is recommended that morbidly obese patients undergo appropriate counseling before the initiation of this expensive and invasive therapy.</p

    Identification of Coevolving Residues and Coevolution Potentials Emphasizing Structure, Bond Formation and Catalytic Coordination in Protein Evolution

    Get PDF
    The structure and function of a protein is dependent on coordinated interactions between its residues. The selective pressures associated with a mutation at one site should therefore depend on the amino acid identity of interacting sites. Mutual information has previously been applied to multiple sequence alignments as a means of detecting coevolutionary interactions. Here, we introduce a refinement of the mutual information method that: 1) removes a significant, non-coevolutionary bias and 2) accounts for heteroscedasticity. Using a large, non-overlapping database of protein alignments, we demonstrate that predicted coevolving residue-pairs tend to lie in close physical proximity. We introduce coevolution potentials as a novel measure of the propensity for the 20 amino acids to pair amongst predicted coevolutionary interactions. Ionic, hydrogen, and disulfide bond-forming pairs exhibited the highest potentials. Finally, we demonstrate that pairs of catalytic residues have a significantly increased likelihood to be identified as coevolving. These correlations to distinct protein features verify the accuracy of our algorithm and are consistent with a model of coevolution in which selective pressures towards preserving residue interactions act to shape the mutational landscape of a protein by restricting the set of admissible neutral mutations

    Coevolution of amino acid residues in the key photosynthetic enzyme Rubisco

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the key forces shaping proteins is coevolution of amino acid residues. Knowing which residues coevolve in a particular protein may facilitate our understanding of protein evolution, structure and function, and help to identify substitutions that may lead to desired changes in enzyme kinetics. Rubisco, the most abundant enzyme in biosphere, plays an essential role in the process of carbon fixation through photosynthesis, thus facilitating life on Earth. This makes Rubisco an important model system for studying the dynamics of protein fitness optimization on the evolutionary landscape. In this study we investigated the selective and coevolutionary forces acting on large subunit of land plants Rubisco using Markov models of codon substitution and clustering approaches applied to amino acid substitution histories.</p> <p>Results</p> <p>We found that both selection and coevolution shape Rubisco, and that positively selected and coevolving residues have their specifically favored amino acid composition and pairing preference. The mapping of these residues on the known Rubisco tertiary structures showed that the coevolving residues tend to be in closer proximity with each other compared to the background, while positively selected residues tend to be further away from each other. This study also reveals that the residues under positive selection or coevolutionary force are located within functionally important regions and that some residues are targets of both positive selection and coevolution at the same time.</p> <p>Conclusion</p> <p>Our results demonstrate that coevolution of residues is common in Rubisco of land plants and that there is an overlap between coevolving and positively selected residues. Knowledge of which Rubisco residues are coevolving and positively selected could be used for further work on structural modeling and identification of substitutions that may be changed in order to improve efficiency of this important enzyme in crops.</p

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Correlated Mutations: A Hallmark of Phenotypic Amino Acid Substitutions

    Get PDF
    Point mutations resulting in the substitution of a single amino acid can cause severe functional consequences, but can also be completely harmless. Understanding what determines the phenotypical impact is important both for planning targeted mutation experiments in the laboratory and for analyzing naturally occurring mutations found in patients. Common wisdom suggests using the extent of evolutionary conservation of a residue or a sequence motif as an indicator of its functional importance and thus vulnerability in case of mutation. In this work, we put forward the hypothesis that in addition to conservation, co-evolution of residues in a protein influences the likelihood of a residue to be functionally important and thus associated with disease. While the basic idea of a relation between co-evolution and functional sites has been explored before, we have conducted the first systematic and comprehensive analysis of point mutations causing disease in humans with respect to correlated mutations. We included 14,211 distinct positions with known disease-causing point mutations in 1,153 human proteins in our analysis. Our data show that (1) correlated positions are significantly more likely to be disease-associated than expected by chance, and that (2) this signal cannot be explained by conservation patterns of individual sequence positions. Although correlated residues have primarily been used to predict contact sites, our data are in agreement with previous observations that (3) many such correlations do not relate to physical contacts between amino acid residues. Access to our analysis results are provided at http://webclu.bio.wzw.tum.de/~pagel/supplements/correlated-positions/

    Biochemical Properties of a Novel Cysteine Protease of Plasmodium vivax, Vivapain-4

    Get PDF
    Plasmodium vivax affects hundreds of millions each year and results in severe morbidity and mortality. Plasmodial cysteine proteases (CPs) play crucial roles during the progression of malaria since inhibition of these molecules impairs parasite growth. These CPs might be targeted for new antimalarial drugs. We characterized a novel P. vivax CP, vivapain-4 (VX-4), which appeared to evolve differentially among primate Plasmodium species. VX-4 showed highly unique substrate preference depending on surrounding micro-environmental pH. It effectively hydrolyzed benzyloxycarbonyl-Leu-Arg-4-methyl-coumaryl-7-amide (Z-Leu-Arg-MCA) and Z-Phe-Arg-MCA at acidic pH and Z-Arg-Arg-MCA at neutral pH. Three amino acids (Ala90, Gly157 and Glu180) that delineate the S2 pocket were found to be substituted in VX-4. Alteration of Glu180 abolished hydrolytic activity against Z-Arg-Arg-MCA at neutral pH, indicating Glu180 is intimately involved in the pH-dependent substrate preference. VX-4 hydrolyzed actin at neutral pH and hemoglobin at acidic pH, and participated in plasmepsin 4 activation at neutral/acidic pH. VX-4 was localized in the food vacuoles and cytoplasm of the erythrocytic stage of P. vivax. The differential substrate preferences depending on pH suggested a highly efficient mechanism to enlarge biological implications of VX-4, including hemoglobin degradation, maturation of plasmepsin, and remodeling of the parasite architecture during growth and development of P. vivax

    Natural products in modern life science

    Get PDF
    With a realistic threat against biodiversity in rain forests and in the sea, a sustainable use of natural products is becoming more and more important. Basic research directed against different organisms in Nature could reveal unexpected insights into fundamental biological mechanisms but also new pharmaceutical or biotechnological possibilities of more immediate use. Many different strategies have been used prospecting the biodiversity of Earth in the search for novel structure–activity relationships, which has resulted in important discoveries in drug development. However, we believe that the development of multidisciplinary incentives will be necessary for a future successful exploration of Nature. With this aim, one way would be a modernization and renewal of a venerable proven interdisciplinary science, Pharmacognosy, which represents an integrated way of studying biological systems. This has been demonstrated based on an explanatory model where the different parts of the model are explained by our ongoing research. Anti-inflammatory natural products have been discovered based on ethnopharmacological observations, marine sponges in cold water have resulted in substances with ecological impact, combinatory strategy of ecology and chemistry has revealed new insights into the biodiversity of fungi, in depth studies of cyclic peptides (cyclotides) has created new possibilities for engineering of bioactive peptides, development of new strategies using phylogeny and chemography has resulted in new possibilities for navigating chemical and biological space, and using bioinformatic tools for understanding of lateral gene transfer could provide potential drug targets. A multidisciplinary subject like Pharmacognosy, one of several scientific disciplines bridging biology and chemistry with medicine, has a strategic position for studies of complex scientific questions based on observations in Nature. Furthermore, natural product research based on intriguing scientific questions in Nature can be of value to increase the attraction for young students in modern life science
    corecore