101 research outputs found

    Constraining Dark Energy and Cosmological Transition Redshift with Type Ia Supernovae

    Full text link
    The property of dark energy and the physical reason for acceleration of the present universe are two of the most difficult problems in modern cosmology. The dark energy contributes about two-thirds of the critical density of the present universe from the observations of type-Ia supernova (SNe Ia) and anisotropy of cosmic microwave background (CMB).The SN Ia observations also suggest that the universe expanded from a deceleration to an acceleration phase at some redshift, implying the existence of a nearly uniform component of dark energy with negative pressure. We use the ``gold'' sample containing 157 SNe Ia and two recent well-measured additions, SNe Ia 1994ae and 1998aq to explore the properties of dark energy and the transition redshift. For a flat universe with the cosmological constant, we measure ΩM=0.280.05+0.04\Omega_{M}=0.28_{-0.05}^{+0.04}, which is consistent with Riess et al. The transition redshift is zT=0.600.08+0.06z_{T}=0.60_{-0.08}^{+0.06}. We also discuss several dark energy models that define the w(z)w(z) of the parameterized equation of state of dark energy including one parameter and two parameters (w(z)w(z) being the ratio of the pressure to energy density). Our calculations show that the accurately calculated transition redshift varies from zT=0.290.06+0.07z_{T}=0.29_{-0.06}^{+0.07} to zT=0.600.08+0.06z_{T}=0.60_{-0.08}^{+0.06} across these models. We also calculate the minimum redshift zcz_{c} at which the current observations need the universe to accelerate.Comment: 16 pages, 5 figures, 1 tabl

    Robust Genetic Transformation System to Obtain Non-chimeric Transgenic Chickpea

    Get PDF
    Chickpea transformation is an important component for the genetic improvement of this crop, achieved through modern biotechnological approaches. However, recalcitrant tissue cultures and occasional chimerism, encountered during transformation, hinder the efficient generation of transgenic chickpeas. Two key parameters, namely micro-injury and light emitting diode (LED)-based lighting were used to increase transformation efficiency. Early PCR confirmation of positive in vitro transgenic shoots, together with efficient grafting and an extended acclimatization procedure contributed to the rapid generation of transgenic plants. High intensity LED light facilitate chickpea plants to complete their life cycle within 9 weeks thus enabling up to two generations of stable transgenic chickpea lines within 8 months. The method was validated with several genes from different sources, either as single or multi-gene cassettes. Stable transgenic chickpea lines containing GUS (uidA), stress tolerance (AtBAG4 and TlBAG), as well as Fe-biofortification (OsNAS2 and CaNAS2) genes have successfully been produced

    Mechanism of Chemical Activation of Nrf2

    Get PDF
    NF-E2 related factor-2 (Nrf2) promotes the transcription of many cytoprotective genes and is a major drug target for prevention of cancer and other diseases. Indeed, the cancer-preventive activities of several well-known chemical agents were shown to depend on Nrf2 activation. It is well known that chemopreventive Nrf2 activators stabilize Nrf2 by blocking its ubiquitination, but previous studies have indicated that this process occurs exclusively in the cytoplasm. Kelch-like ECH-associated protein 1 (Keap1) binds to Nrf2 and orchestrates Nrf2 ubiquitination, and it has been a widely-held view that inhibition of Nrf2 ubiquitination by chemopreventive agents results from the dissociation of Nrf2 from its repressor Keap1. Here, we show that while the activation of Nrf2 by prototypical chemical activators, including 5,6-dihydrocyclopenta-1,2-dithiole-3-thione (CPDT) and sulforaphane (SF), results solely from inhibition of its ubiquitination, such inhibition occurs predominantly in the nucleus. Moreover, the Nrf2 activators promote Nrf2 association with Keap1, rather than disassociation, which appears to result from inhibition of Nrf2 phosphorylation at Ser40. Available evidence suggests the Nrf2 activators may block Nrf2 ubiquitination by altering Keap1 conformation via reaction with the thiols of specific Keap1 cysteines. We further show that while the inhibitory effects of CPDT and SF on Nrf2 ubiquitination depend entirely on Keap1, Nrf2 is also degraded by a Keap1-independent mechanism. These findings provide significant new insight about Nrf2 activation and suggest that exogenous chemical activators of Nrf2 enter the nucleus to exert most of their inhibitory impact on Nrf2 ubiquitination and degradation

    Intracellular delivery of an anionic antisense oligonucleotide via receptor-mediated endocytosis

    Get PDF
    We describe the synthesis and characterization of a 5′ conjugate between a 2′-O-Me phosphorothioate antisense oligonucleotide and a bivalent RGD (arginine–glycine–aspartic acid) peptide that is a high-affinity ligand for the αvβ3 integrin. We used αvβ3-positive melanoma cells transfected with a reporter comprised of the firefly luciferase gene interrupted by an abnormally spliced intron. Intranuclear delivery of a specific antisense oligonucleotide (termed 623) corrects splicing and allows luciferase expression in these cells. The RGD–623 conjugate or a cationic lipid-623 complex produced significant increases in luciferase expression, while ‘free’ 623 did not. However, the kinetics of luciferase expression was distinct; the RGD–623 conjugate produced a gradual increase followed by a gradual decline, while the cationic lipid-623 complex caused a rapid increase followed by a monotonic decline. The subcellular distribution of the oligonucleotide delivered using cationic lipids included both cytoplasmic vesicles and the nucleus, while the RGD–623 conjugate was primarily found in cytoplasmic vesicles that partially co-localized with a marker for caveolae. Both the cellular uptake and the biological effect of the RGD–623 conjugate were blocked by excess RGD peptide. These observations suggest that the bivalent RGD peptide–oligonucleotide conjugate enters cells via a process of receptor-mediated endocytosis mediated by the αvβ3 integrin

    Adult Neurogenesis Transiently Generates Oxidative Stress

    Get PDF
    An increasing body of evidence suggests that alterations in neurogenesis and oxidative stress are associated with a wide variety of CNS diseases, including Alzheimer’s disease, schizophrenia and Parkinson’s disease, as well as routine loss of function accompanying aging. Interestingly, the association between neurogenesis and the production of reactive oxidative species (ROS) remains largely unexamined. The adult CNS harbors two regions of persistent lifelong neurogenesis: the subventricular zone and the dentate gyrus (DG). These regions contain populations of quiescent neural stem cells (NSCs) that generate mature progeny via rapidly-dividing progenitor cells. We hypothesized that the energetic demands of highly proliferative progenitors generates localized oxidative stress that contributes to ROS-mediated damage within the neuropoietic microenvironment. In vivo examination of germinal niches in adult rodents revealed increases in oxidized DNA and lipid markers, particularly in the subgranular zone (SGZ) of the dentate gyrus. To further pinpoint the cell types responsible for oxidative stress, we employed an in vitro cell culture model allowing for the synchronous terminal differentiation of primary hippocampal NSCs. Inducing differentiation in primary NSCs resulted in an immediate increase in total mitochondria number and overall ROS production, suggesting oxidative stress is generated during a transient window of elevated neurogenesis accompanying normal neurogenesis. To confirm these findings in vivo, we identified a set of oxidation-responsive genes, which respond to antioxidant administration and are significantly elevated in genetic- and exercise-induced model of hyperactive hippocampal neurogenesis. While no direct evidence exists coupling neurogenesis-associated stress to CNS disease, our data suggest that oxidative stress is produced as a result of routine adult neurogenesis

    The ongoing pursuit of neuroprotective therapies in Parkinson disease

    Get PDF
    Many agents developed for neuroprotective treatment of Parkinson disease (PD) have shown great promise in the laboratory, but none have translated to positive results in patients with PD. Potential neuroprotective drugs, such as ubiquinone, creatine and PYM50028, have failed to show any clinical benefits in recent high-profile clinical trials. This 'failure to translate' is likely to be related primarily to our incomplete understanding of the pathogenic mechanisms underlying PD, and excessive reliance on data from toxin-based animal models to judge which agents should be selected for clinical trials. Restricted resources inevitably mean that difficult compromises must be made in terms of trial design, and reliable estimation of efficacy is further hampered by the absence of validated biomarkers of disease progression. Drug development in PD dementia has been mostly unsuccessful; however, emerging biochemical, genetic and pathological evidence suggests a link between tau and amyloid-β deposition and cognitive decline in PD, potentially opening up new possibilities for therapeutic intervention. This Review discusses the most important 'druggable' disease mechanisms in PD, as well as the most-promising drugs that are being evaluated for their potential efficiency in treatment of motor and cognitive impairments in PD

    Oxidative Stress in Neurodegenerative Diseases

    Get PDF
    corecore