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Abstract 

Despite the great promise that many potential neuroprotective agents have shown in the 

laboratory, to date these have not translated to positive results in patients with Parkinson’s 

disease  (PD), with several recent high profile clinical trials (Coenzyme Q10, Creatine, 

Cogane among others) all failing to show any clinical benefits.  This “failure to translate” is 

likely related primarily to our incomplete understanding of the pathogenic mechanisms 

underlying PD together with excessive reliance on data from the toxin-based animal models 

of PD to judge which agents to take to double blind clinical trial evaluation.  In addition 

restricted resources inevitably mean difficult compromises must be made in terms of optimal 

trial design, made harder by the absence of validated biomarkers of disease progression.  

To date, drug development in PD dementia has been mostly unsuccessful; however, 

emerging biochemical, genetic and pathological evidence suggests a link between tau and 

A-Beta deposition and cognitive decline in PD – potentially opening up new targets for 

therapeutic intervention. In this context, this review discusses some of the most important 

existing current and future potential therapeutic agents for motor and cognitive impairments 

on the horizon to help inform whether there is greater reason to expect positive results in the 

short or medium term future.   

 

Key Points 

 Currently obstacles impeding the development of effective neuroprotective therapies 

for PD include a lack of understanding regarding the pathogenesis of PD, lack of 

accurate animal models of PD, limitations in clinical trial design, insensitive trial 

endpoints, a lack of validated biomarkers and inhibitory costs of developing new 

drugs. 

 Advances in the development of transgenic animal models, newer adaptive and 

delayed start trial designs, identification of possible serum, CSF or neuroimaging 

biomarkers and re-positioning of existing drugs for use in PD are making inroads to 

the goal of identifying and testing an effective disease modifying therapy. 

 Alpha-synuclein plays a key role in the pathogenesis of PD and targeting the 

formation and clearance of this protein by directly blocking alpha synuclein 

aggregation, enhancing lysosomal clearance systems or immunisation against alpha-
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synuclein show promising results in pre-clinical models but are still very early in 

development. 

 As 50% of PDD patients have comorbid AD pathology which can confer a worse 

prognosis, targeting tau and AB may be useful avenues to attempt to reduce or halt 

cognitive dysfunction, and disease modifying therapies under investigation in AD may 

also be of benefit in PD. 

 

Introduction 

Despite the obvious need for neuroprotective or disease modifying agents and the great 

promise many potential candidates have shown in preclinical studies, there are currently no 

treatments that have been licensed as neuroprotective agents in Parkinson’s disease (PD).  

Several high profile phase I/II clinical trials of notable potential neuroprotective agents have 

recently failed to show benefits despite strong laboratory and in vivo animal data seeming to 

support their potential. These are summarised in Table 1.  This discrepancy between 

encouraging preclinical data and failure of translation in clinical trials requires continuous 

reappraisal, however rather than performing an individualised analysis of why each of these 

specific agents may have failed in clinical trials, this review focuses on a general critique of 

the current obstacles that continue to impede the development of neuroprotective agents. In 

this context, we present a summary of the current status of major potential therapeutic 

candidates currently being assessed in clinical trials for neuroprotective or disease modifying 

effects in PD and assessment of their therapeutic potential.  Although clinical trials assessing 

potential disease modifying therapies have mainly focused on preserving motor function 

(historically easier to assess and because validated tools to assess non-motor symptoms 

have only relatively recently appeared); non-motor symptoms of PD, (in particular cognitive 

dysfunction), are increasingly recognised as having a significant contribution to patients’ 

quality of life, are only partially responsive to dopaminergic therapy and mostly remain 

refractory to current intervention1,2. Of specific relevance is the growing amount of evidence 

suggesting that AD-type pathology – amyloid-B plaques and hyperphosphorylated tau-

containing neurofibrillary tangles, contributes to cognitive dysfunction in PD. To this end, we 

also discuss whether targeting tau and utilising disease modifying treatments in AD to 

improve cognitive dysfunction may be of benefit to patients with PD also. 

 

Current obstacles impeding development of neuroprotective therapies in PD and 

potential solutions 

Lack of understanding regarding the pathogenesis of PD 

It is currently believed that neurodegeneration in PD is due to a combination of cell-

autonomous and non cell-autonomous processes. The cell autonomous mechanisms include 

mitochondrial dysfunction, dysfunction of the autophagy/lysosomal processes and 

dysregulation of calcium homeostasis, while non-cell autonomous processes include 

neuroinflammation, loss of trophic support and the trans-synaptic transmission of misfolded 

alpha synuclein.3,4 The interaction between these pathways remains unclear, and the long 

term impact on interfering with these fundamental processes for normal healthy cell function 

is not understood, but this process of neuronal degeneration has been speculated to occur 

in four stages: from the initial molecular prodrome, leading to cell damage, resulting in 

decompensation and dysfunction, and finally to degeneration. Elucidation of these 



pathogenetic details is facilitated by; 1) The creation of human cell lines from patients with 

the various Mendelian forms of PD, helping to explain the interactions between lysosomes, 

mitochondria and abnormal protein aggregation in single cell systems, 2) the development of 

transgenic animals with human PD genes helping to demonstrate how these processes 

impact on cell-to cell transmission of alpha synuclein.  This knowledge can identify whether 

patients at each or any stage of neurodegeneration, might gain benefit from potential “target 

specific” neuroprotective or neurorestorative therapies (for review3,5) 

 

Lack of accurate animal models: 

The most widely used animal models of PD are based on administration of locally 

administered neurotoxin 6-hydroxydopamine (6-OHDA), systemically administered toxin 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice and non-human primates, or 

direct infusion of bacterial endotoxin lipopolysaccharide (LPS) into the nigrostriatal pathway 

of rats to produce models of selective degeneration of substantia nigra pars compacta 

(SNpc) dopamine (DA) neurons to produce a parkinsonian syndrome.6,7 Other neurotoxins 

less often also used include rotenone, paraquat, isoquinoline derivatives, and 

methamphetamine.8 Though adequate at replicating the motor aspects of PD in the later 

stages, the very selectivity of these models means they often do not exhibit the complex 

extra-dopaminergic involvement and non-motor dysfunction seen in the early stages of PD.  

Also, the pathological hallmark of PD – the presence of Lewy bodies (LB), has not 

consistently been observed in these neurotoxin based animal models.8  Though some MPTP 

models in rhesus monkeys have been shown to mimic the extra-striatal dopamine, 

noradrenaline, and serotonin changes often observed in humans,9 these models require the 

acute administration of toxins which likely does not reflect the chronic and progressive 

nature of the neurodegenerative process in PD.  Recent refinements to this technique 

however using low concentrations or an intermittent dosing schedules are now being 

successfully used to replicate the more progressive pathology seen in humans and are also 

being used to study compensatory mechanisms10,11  

Transgenic animal models, which recapitulate monogenic mutations seen in familial PD 

patients, have an advantage over neurotoxin based models is that these models produce the 

pathological abnormalities seen in PD and provide insights into selected molecular aspects 

of PD pathogenesis and early stages of the disease - the MitoPark mouse has been 

developed in which mitochondrial function is selectively disrupted in dopaminergic neurons – 

producing a mouse exhibiting a progressive PD-like phenotype. Though not reproducing the 

genetic mutations seen in humans with PD, these models could be useful in large scale 

screening of new therapeutic agents.7  A major limitation of these models however is that 

they do not consistently reproduce the expected nigrostriatal degeneration and phenotypes 

seen in PD.12 

Due to the growing amount of evidence implicating the mis-folding of alpha synuclein as a 

key event involved in the pathogenesis of PD, new mouse models have been developed in 

which a single injection of synthetic mis-folded alpha-synuclein can initiate a cascade of 

events leading to the presence of LB-like inclusions, selective loss of neurons in the 

substantia nigra pars compacta, and motor impairments.13,14  



While it is clear that these animal models have led to great steps forward in the treatment of 

the motor symptoms and complications of PD, it is early to judge whether they will be any 

more successful in aiding the development of disease modifying or neuroprotective 

strategies.   There is currently no “best” model that perfectly captures the chronic 

neurodegeneration and clinical phenotypes seen in PD – the current animal models have 

advantages and disadvantages; to most effectively develop a neuroprotective agent in pre-

clinical trials, investigators need to understand the limitations of various models and may 

need to choose a specific model based on specific research needs or develop an agent that 

has reproducible efficacy across multiple animal models. 

 

Limitations in trial design: 

A further potential contribution to the lack of translation between encouraging results in 

preclinical models and clinical trials is the trial design. Current designs may either not be 

sensitive enough to identify disease modifying effects, or may struggle to convincingly 

separate such effects from long-lasting symptomatic relief. 

Washout trial designs attempt to eliminate and separate any potential symptomatic effects 

from disease modifying effects of the studied drug treatment; however, there often remains 

underlying uncertainty as to whether any of the beneficial effects seen could be due to 

unanticipated long lasting symptomatic effects if the washout period is too short –one 

putative explanation for levodopa’s apparent disease modifying effect in the ELLDOPA 

trial.15  However using a long washout period of several months or longer may be 

confounded by the progressive nature of PD, and risks high levels of patient drop out.   

More promising are delayed start designs, as used in the ADAGIO trial to assess rasagiline’s 

disease modifying potential, although these require an initial period long enough to allow a 

neuroprotective effect to occur (which also raises ethical concerns of drug naïve patients 

remaining on placebo for a long period), and again differential patient dropout between 

randomised groups can affect the statistical analysis of results, while the expected 

differences between the early and delayed start groups are often small due to the slowly 

progressive nature of PD.16 

To truly assess neuroprotective or disease modifying effects, a long term simple / 

longitudinal study designs is most effective - using composite global measures to provide a 

multi-dimensional assessment of disease progression over a long time period – typically a 

number of years.17  Though this is the most reliable at differentiating disease modifying 

effects on various outcomes, it requires considerable investment and extensive collaboration 

between drug companies, research institutes and clinical centres to manage the significant 

costs.  

 

Insensitive  endpoints/outcome measures of clinical trials: 

Objective endpoints in PD based on biomarkers in CSF, blood or imaging are yet to have 

documented validity and reliability, so clinical trials have to rely on clinical endpoints or 

markers by which to assess disease progression, which have numerous limitations. The time 



taken for drug naïve PD patients to require dopaminergic or symptomatic therapy as a 

specific endpoint as evidence of disease progression is often used in clinical trials, and 

although this is a well-defined, measurable endpoint, not confounded by any possible 

symptomatic effects from other drugs,18 a notable limitation is that in reality, the decision to 

start symptomatic therapy relies on a number of complex factors between the patient and the 

physician and often does not correlate with disease stage or rate of progression, and it is 

often impossible to differentiate whether delayed need for symptomatic treatment reflects 

symptomatic or neuroprotective effects of a study drug18 19 

Another commonly used method is the use of repeated assessment with the Unified PD 

rating scale (UPDRS). While also subject to intra- and inter- rater variability, the most recent 

version of this scale (MDS-UPDRS), when combined with scales to evaluate gait and 

dyskinesia and multiple other non-motor measures of cognition, mood and sleep, can 

provide multiple opportunities to detect a signal of effect, perhaps more likely to indicate 

clinically relevant advantage if all are indicating positive beneficial effects. 

 

Lack of validated biomarkers 

A validated, sensitive biomarker to diagnose PD and monitor response to therapeutic 

intervention does not currently exist, though research is ongoing.   The Parkinson’s 

Progression Markers Initiative (PPMI), have recently published encouraging results that have 

shown that levels of CSF Aβ1-42, T-tau, P-tau181, and α-synuclein have prognostic and 

diagnostic potential in early-stage PD, with lower levels seen in PD compared with health 

controls.20 Groups trying to improve upon imaging biomarkers using 7T MRI, transcranial 

ultrasound, novel MRI sequences or novel PET ligands have shown promise in 

differentiating PD patients from controls, but are still at an early stage in development.21 

 

Suboptimal patient population choice for clinical trials 

Commonly, studies have chosen to include early untreated PD patients as there is thought to 

be a higher percentage of remaining neurons that might be salvaged compared to patients 

with more advanced disease. 22 A recent study quantifying nigrostriatal degeneration in PD 

patients from time of diagnosis showed that dopamine markers in the fibres of the dorsal 

putamen are however already variably reduced at diagnosis and are virtually absent as little 

as 4 years after diagnosis.23  Any clinical deterioration after this time is thought to represent 

a loss of a compensatory mechanisms or degeneration of non-dopaminergic neurons.  This 

data has obvious implications for patient selection for future trials and may also suggest that 

previous trials with seemingly negative results may have been conducted in patients with 

little surviving dopaminergic neurons.  Ideally, patients enrolled for potential neuroprotective 

trials should be at an early enough stage of their disease so as to have a greater number of 

surviving neurons from which to derive benefit.  A caveat to this is that these patients 

typically take longer to identify, and there is a higher rate of misdiagnosis, or risk of including 

patients with atypical forms of parkinsonism such as PSP, MSA, CBD etc., while 10% of 

patients diagnosed clinically with early PD have normal dopaminergic functional imaging (so 

called SWEDDS (scans without evidence of dopaminergic deficit)24. Patients may also have 

widely different severity of disease even at presentation and have variable rates of 



progression - increasing age at onset is associated with higher levels of disability and Hoehn 

and Yahr stage, while tremor dominant PD is associated with slower disease progression 

and less cognitive impairment than patients with akinetic rigid phenotypes.25 

Conversely, including patients with moderate/advanced PD who are more likely to have 

measurable endpoints on validated scales, may have such advanced neurodegeneration 

that the effect of introducing neuroprotective agents may be too little, too late.  However, it 

has been recently shown that there is a continued persistence of populations of melanin 

containing neurons in the SNpc in comparison to the number of tyrosine hydroxylase-

immunoreactive neurons for decades after diagnosis, which may suggests that trophic or 

regenerative therapies might still have value even in the later stages of the illness.23 

In summary, although there is a little doubt that intervening early as possible will provide the 

greatest likelihood of a response to any neuroprotective treatment, the compromise position 

however is that there will likely always be a need to identify a neuroprotective treatment that 

is also helpful in the population with clinically manifest disease, and a need to identify 

whether it is tolerated in conjunction with symptomatic agents such as L-dopa, and if it has 

any effects on the development on the major disabling milestones of PD such as freezing, 

falls, and dementia. 

Choosing the most effective dose(s) 

Doses of experimental therapies for use in human trials are often chosen to replicate plasma 

concentrations obtained from previous animal models; however, this may not necessarily 

correlate with concentrations seen in the brain and at receptor level.  Adding to the 

uncertainty is that results from various animal models are often conflicting, or may only be 

effective within a narrow range.  As no validated biomarker exists currently, it is difficult to 

titrate varying doses or ascertain the most effective dose range.  The use of adaptive trial 

designs however, can allow a large number of varying doses to be tested in the initial 

stages, without negatively affecting the longterm results.26 

 

Inhibitory development costs 

The development of a new therapy takes approximately 15 years and costs around 

$1.2billion.27  In spite of the potential commercial value of an effective disease-modifying 

therapy for PD, this area of research is considered high-risk within the pharmaceutical 

industry due to the high costs of trials and the lack of any positive results to date.  Novel 

methods being used to overcome this include using high throughput screening methods 

which utilise phenotypic cell-based drug screens.  Yeast cells engineered to express alpha 

synuclein in a way that re-captures the cellular pathology in PD have recently been used to 

screen more than 190,000 compounds for potential neuroprotective effects – which led to 

the identification of a new potential pharmaceutical target, the E3 ubiquitin ligase, and a 

novel molecule, NAB2, an N-aryl benzimidazole, which showed protective effects in three 

different PD models.28,29  High throughput screening can also be combined with a focus on 

drugs already licensed for use in humans for re-purposing to assess their effects on 

mitochondrial function  - ursodeoxycholic acid, already licensed for use in liver disease, has 

been recently identified using this method and phase 2a trials are already planned.30 



Other non-mammalian transgenic models of PD using drosophila and zebrafish are also 

being used to as low-cost, high throughput method to screen novel compounds that may 

counteract pathological mechanisms of PD.7 

 

Current neuroprotective strategies/ candidates 

Based on the various cellular mechanisms involved in the pathogenesis of PD, growing 

evidence implicates the modulation of calcium homeostasis, oxidative stress, mitochondrial 

function, autophagy, and formation and clearance of alpha-synuclein as potential targets for 

putative neuroprotective therapies (Figure 1).  These targets and the main candidates for 

neuroprotective therapies currently in clinical trial testing are summarised in Table 2.  

 

Calcium channel blockade 

It has been shown that the apparent selective vulnerability and degeneration of 

dopaminergic neurons of the SNpc in PD may be related to high energy demands 

associated with calcium influx through CaV1.3 L-type calcium channels (LTCC) during their 

autonomous pacemaking, leading to increased mitochondrial-mediated oxidative stress and 

subsequent cell death. 31  Furthermore, increased CaV1.3 subtype expression occurs in the 

cerebral cortex of early stage PD patients before the appearance of pathological changes, 

suggesting that disturbed calcium homeostasis may be an early event in the pathogenesis 

and not just a consequence of neurodegeneration, therefore offering a potentially attractive 

target for neuroprotective therapies.32  

Epidemiological data shows that patients treated with centrally acting calcium channel 

blockers may have a reduced risk of developing PD,33–35 although this remains 

controversial.36  Isradipine, licensed for the treatment of hypertension, has a high affinity for 

CaV1.3 LTCC, and while there is strong evidence of benefit in pre-clinical studies of PD;37,38 

a recent randomised trial (RCT), though not powered for efficacy, suggested only a very 

modest advantage (~1 point in the total UPDRS score) in patients treated with 10mg 

isradipine for 12 months of questionable clinical relevance.39  Furthermore, pre-clinical data 

suggests that most robust neuroprotective effects of isradipine are seen at doses much 

higher than would be tolerated in humans – possibly limiting isradipine’s therapeutic 

potential. 37  Nevertheless, a fully powered phase III trial is planned to assess efficacy of 

isradipine 10 mg in PD. Emerging candidates from pre-clinical studies including novel, highly 

selective CaV1.3 antagonists may offer more promising results in the future without 

producing side effects that accompany general antagonism of L-type calcium channels.40 

 

Oxidative stress pathways 

Evidence of oxidative damage is seen in the SN of PD patients in post mortem studies,41 and 

is thought to play an important role in the pathogenesis of PD, occurring as a result of failure 

of endogenous protective mechanisms, DA metabolism, defective mitophagy and 

accumulation of mtDNA mutations. Though previous efforts to reduce oxidative stress using 

antioxidants selegiline, rasagiline and vitamin E have not convincingly or consistently 

demonstrated disease modifying effects,42,43current clinical trials are underway investigating 

the potential of other various anti-oxidants. 



Based on epidemiological data showing that patients with high levels of serum urate, a 

natural anti-oxidant, have a 33% reduction in the risk of developing PD, 44–46 and high levels 

of urate in serum and CSF of patients with early PD are associated with slower rates of 

clinical and radiological progression,47–49 efforts are underway to investigate whether raising 

serum urate - using an orally administered precursor inosine,50 may serve as a potentially 

neuroprotective therapy. In a recent RCT, inosine was well tolerated,51 and was associated 

with a favourable rate of progression based on changes in UPDRS scores over 24 months; 

but after adjustment for baseline differences, this amounted to only ~1 point per year on total 

UPDRS scale.  Although the trial data was not powered to determine efficacy, there was no 

difference between the time to requiring dopaminergic therapy between groups, and few 

patients reached the 2 year analysis time point.  Furthermore, elevated serum urate has also 

been shown to increase the risk of hypertension, coronary heart disease, gout and stroke 

over the longer term, and these side effects are potentially problematic for older patients with 

PD, potentially limiting its ultility.52  A larger phase III trial is currently being planned. 

 

Another potential target being investigated to lessen oxidative stress is by targeting iron 

accumulation.  Levels of iron in excess of that expected in normal ageing have has been 

found in the SNpc of patients with sporadic PD and autosomal recessive juvenile 

parkinsonism53 and in vivo studies using MRI and transcranial ultrasonography show that 

increased levels of iron in the basal ganglia and SN correlate to PD motor severity54 

potentially by inducing oxidative stress and aggregation of misfolded alpha synuclein.55 

There is strong evidence from pre-clinical studies that deferiprone, a chelating agent 

licensed for the treatment of peripheral iron overload disorders, is neuroprotective.56 57 58 A 

recent delayed start design trial of deferiprone demonstrated a reduction in the UPDRS 

motor subscale in the early start group (-2.3 +/- 0.6) compared to the delayed start group 

(+1.0 +/- 0.7) which was sustained at 12 months – though improvements waned after 18 

months continuous treatment.59  Whether excessive iron represents a cause or consequence 

of dopaminergic neuronal cell death is uncertain and though efficacy results are highly 

encouraging, it remains to be seen whether observed clinical benefits in PD patients 

occurred as a result of iron chelation alone or via permissive effects of chelation on 

dopaminergic treatments.  Two further phase II/III trials are now underway (Clinical trials.gov 

identifier NCT01539837 and NCT00943748). 

Glutathione (GSH) is a tripeptide that acts as the brain’s primary anti-oxidant system (and 

also as a neurotransmitter)60  Prolonged depletion of GSH inhibits mitochondrial complex I 

activity61 and depletion of GSH is seen in the SN of PD patients,62,63 but also patients with 

incidental Lewy Body disease – suggesting that loss of GSH occurs early in the 

pathogenesis of PD.64  Previous efforts to increase GSH levels in patients with PD 

intravenously have been unsuccessful as GSH crosses the blood brain barrier via a 

saturable mechanism and is not taken up by neurons, presumably explaining why an RCT 

administering intravenous GSH to 21 PD patients failed to show any evidence of clinical 

efficacy60,65. 

N-acetylcysteine (NAC), used as a mucolytic, is an oral precursor to GSH, and decreases 

alpha-synuclein aggregation in transgenic models,66. In a pilot human trial, NAC was well 

tolerated, and could raise levels of GSH in CSF.67 Though data from transgenic models is 

encouraging, there is as yet no efficacy data in humans, so it remains to be seen whether 



orally administered NAC will offer positive effects. Notably a trial using oral administered 

NAC in patients with early Alzheimer’s disease (AD) failed to alter any primary outcome 

measures.68  Given that GSH depletion seems to occur early in the pathogenesis of PD, 

GSH replacement may be best trialled among patients at the earliest or pre-symptomatic 

stage of disease.  

Zonisamide, is a drug used for the adjunctive treatment of epilepsy thought to act via 

inhibition of voltage-gated sodium channels and calcium channels, mediating neuronal 

depolarization-induced glutamate release.69  It also enhances dopamine release and is 

licensed in Japan as an adjunctive treatment in PD to aid motor symptoms, and is currently 

being investigated in parallel for its neuroprotective potential.70  While zonisamide has 

demonstrated symptomatic benefits in doses from 25mg-100mg, pre-clinical data regarding 

neuroprotective equivalent doses is conflicting – some investigators used serum 

concentrations well above that which could be achieved with maximal human dosing,71. 

While separating proven symptomatic benefits from any neuroprotective effects may also 

prove difficult, a Phase 2 trial is currently underway (Clinical Trials.gov identifier 

NCT01766128). 

Enhancing mitochondrial function 

Considerable evidence from genetic, animal and post mortem studies implicate 

mitochondrial dysfunction in the pathogenesis of PD (see for review72) - mitochondrial toxins 

can cause parkinsonism, autosomal recessive forms of PD related to mutations in Parkin, 

DJ-1 and PINK1 impair mitochondrial autophagy and the selective vulnerability of nigro-

striatal neurons may be related to the high metabolic demands placed on the cells.  Though 

enhancing mitochondrial biogenesis to counteract the effects of neurodegeneration is a 

reasonable strategy, recent trials using mitochondrial enhancers such as creatine, co-

enzyme Q10 and MitoQ have all failed to convincingly demonstrate disease modifying 

effects. Possible reasons speculated to account for this failure include poor brain penetrance 

of the compound, patients selected with too far advanced degeneration to benefit and also 

growing evidence to suggest that mitophagy and mitochondrial calcium homeostasis may 

play larger roles in maintaining mitochondrial biogenesis than previously thought, and may 

offer better potential targets for intervention.73 

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is a protein 

that interacts with the peroxisome proliferator-activated receptor gamma (PPARy) and 

controls mitochondrial and microglial function, and acts with SIRT1 to upregulate 

mitochondrial biogenesis74 and is therefore a potentially attractive target for intervention.  

Encouraging data from pre-clinical studies of resveratrol, a SIRT1 activator, has shown it 

protects dopaminergic neurons from MPTP and 6-OHDA induced deficits in vivo, possibly 

via modulation of autophagy and pro-inflammatory pathways, and further in vivo testing is 

planned.75,76 Though no clinical data exists, there is a sufficient indication of potential benefit 

to merit further in vivo studies better elucidate the importance of these mechanisms which 

could lead to a pilot study in patients with PD. 

A recent novel high throughput screening method to identify potential compound’s that can 

rescue mitochondrial dysfunction directly in PD patient tissue identified urosdeoxycholic acid, 

which was subsequently shown to rescue mitochondrial function in parkin & LRRK2 mutant 

fibroblasts in vitro, and is neuroprotective in transgenic mouse model of AD, and has led to 

this compound being fast tracked to a phase 1 trial currently being planned.30 



 

Neuroinflammation 

Inflammation is increasingly recognised as playing an important role in the pathogenesis of 

PD based on i) epidemiological studies suggesting NSAID use confers a lower risk of 

developing PD;77 ii) the presence of increased microglial activation seen in PD patients using 

PET imaging;78 iii) increased pro-inflammatory mediators seen in the SN post-mortem tissue 

of PD patients79  and an association between the HLA locus and PD risk from genome-

association studies.80Agents that target these inflammatory pathways are currently being 

investigated in clinical trials. 

Pioglitazone, licensed for use in patients with type 2 diabetes, is thought to act via activation 

of the PPARy 81 and has demonstrated anti-inflammatory-mediated neuroprotective effects 

in models of AD,82 epilepsy,83 stroke84 and ALS.85 Due to its demonstrated efficacy across 

multiple toxin animal models and influence across multiple cellular pathways,86–88 a Phase 2 

trial is currently underway (Clinical Trials.gov Identifier NCT01280123); however, its future 

potential may be limited by adverse effects and an association with the development of 

bladder cancers.89–92  It has recently been discovered that many of the metabolic effects of 

pioglitazones may occur independently of PPARy and involve binding to a complex on the 

inner mitochondrial membrane - identified as mTOT (mitochondrial target of thiazolidinones) 

directly influencing mitochondrial function93,94 and novel compounds are in early 

development in testing against models of PD, which may offer similar benefits of 

neuroprotection with limited side effects.95  

Myeloperoxidase (MPO), a heme enzyme expressed in a variety of phagocytic cells, is 

thought to play an important role in alpha synuclein-mediated toxicity.  Following alpha 

synuclein induced activation of microglia, MPO mediates production of pro-inflammatory 

molecules, promoting misfolding of wild type alpha synuclein, leading to further aggregate 

formation in unaffected neurons.96 MPO expression in microglia is found to be up regulated 

in the ventral midbrain of human PD patients and mice exposed to MPTP97 and it has been 

speculated that inhibition of MPO may slow down neurodegeneration in PD given that 

ventral midbrain dopaminergic neurons of mutant mice deficient in MPO are more resistant 

to MPTP-induced cytotoxicity.  Though a RCT of AZD3241, a novel MPO inhibitor, has 

recently been completed which demonstrated that it was well tolerated, and decreased 

plasma MPO activity,98there is no efficacy data, and the evidence from in vitro or in vivo 

studies that this particular compound may have neuroprotective effects in PD patients is still 

limited. 

Statins, as well having effects on lowering cholesterol, have marked anti-inflammatory 

effects.  In vitro studies show that simvastatin can reduce alpha-synuclein aggregation, 

inhibit the formation of TNF-alpha and peroxynitrite in activated microglia, and via 

modulation of the NMDA receptor, protect dopaminergic neurons from inflammatory 

damage, while in LPS and MPTP animal models of PD, statins prevents dopaminergic 

degeneration.99–104 Data from epidemiological data regarding statin use and risk of 

developing PD is variable, with some studies identifying a reduced incidence of PD with 

statin use105–107while others found no association108–110 or an inverse association with LDL 

cholesterol111 – though this variance is possibly explained by early studies not accounting for 

confounders such as co-morbid diabetes, and use of NSAID’s and calcium channel blockers 

which can modulate the risk of PD. However, a recent population-based study, adjusted for 



most confounders, showed that patients on continued lipophilic statin therapy had a reduced 

incidence of PD compared to people who stopped their medication, though more longitudinal 

studies are needed.112 While no clinical data of statin treatment in PD exist, there is 

promising in vivo and in vitro data highlighting potential mechanism and this should fuel 

further clinical studies.  

 

Targeting alpha synuclein: 

The pathological hallmark of PD is the presence of LB’s and Lewy neurites (LN), of which 

alpha-synuclein constitutes a major component. Substantial evidence suggests that the 

conversion of alpha-synuclein from soluble monomers to aggregated, insoluble forms is a 

key event in the pathogenesis of PD.113 Usually cleared from the cell by the ubiquitin 

proteasome or autophagy-lysosomal systems, defects of these systems have been identified 

in patients with PD.  Furthermore, post mortem studies of fetal mesencephalic brain tissue 

grafted into brains of PD patients showed evidence of LB-like inclusions in the host tissue, 

suggesting that alpha-synuclein can transfer from unaffected cells and may act as a prion 

type protein – findings which subsequently have been confirmed in vitro an in vivo13,114–117. 

Mutations and variations in the alpha-synuclein gene can cause familial PD and contribute to 

sporadic PD, and overexpression in transgenic models leads to a parkinsonian phenotype; 

and therefore targeting the formation and clearance of alpha-synuclein as therapeutic 

measures to protect against neurodegeneration are promising avenues gathering great 

interest.   

Reducing the formation of alpha-synuclein is one potential strategy and pre-clinical studies 

using small peptides, vector mediated RNAi interference and novel molecules such as 

ELN484228 that can directly block alpha synuclein aggregation118 are promising avenues 

but are still early in development.  

Another strategy  is to reduce the amount of insoluble toxic alpha-synuclein, and both active 

immunisation, or passive immunisation with monoclonal antibodies against alpha synuclein, 

given to transgenic mice overexpressing human alpha synuclein have promoted reduction 

and clearance of the protein and rescued behavioural deficits.119,120 This data has led to 2 

commercial programs i) PRX02, which is an antibody against the 9E4 C-terminus of alpha 

synuclein, has major support pledged by Roche, with a phase I trial testing the safety and 

tolerability of PRX02 commencing in healthy individuals (Clinical trials.gov NCT02095171); 

and ii) Affitope (PD01), a peptide-carrier conjugate vaccine developed to induce antibodies 

selectively against alpha synuclein, currently in phase I clinical trial testing in patients with 

PD (Clinical trials.gov NCT01568099). On a cautionary note, similar efforts using 

immunization are more advanced in AD. Previous trials targeting beta amyloid in patients 

with AD have led to early termination due to significant meningoencephalitis, and led to 

concerns regarding antibodies altering the physiological function of other synucleins or 

triggering autoimmunity, potentially exacerbating Parkinson’s pathology. However, unlike b-

amyloid, a-synuclein does not deposit in leptomeningeal and cortical blood vessels, and by 

using vaccines with short peptides that do not trigger T cell autoimmunity or cross react with 

other synucleins, these risks are theoretically lower.121 

Phosphorylation of alpha-synuclein at serine residue position 129 represents the most 

abundant form of alpha-synuclein found in LB’s and targeting these pathways underlie the 



mechanisms behind kinase inhibitors.122However, as several different kinases are capable of 

phosphorylating alpha-synuclein, a significant production of phosphor-Ser129 alpha-

synuclein would still occur with drugs targeting a single kinase alone, and therefore targeting 

enzymes such as protein phosphatase 2A (PP2A) that enhance de-phosphorylation of 

Ser129 may represent a potentially valuable therapeutic strategy.123 Metformin has recently 

been shown to lower levels of alpha-synuclein in vitro and in vivo by inhibiting mammalian 

target of rapamycin (mTOR) and enhancing PP2A activity – leading to reduced levels of 

alpha-synuclein.124 Interestingly, although epidemiological data regarding the association 

between PD and diabetes is conflicting, a recent prospective cohort study showed that Type 

2 diabetes increased the incidence of PD in a Taiwanese population almost 2-fold, which 

was exacerbated by the use of sulphonureas, but the risk was avoided by the use of 

metformin therapy.125 This emerging data is prompting further studies to investigate 

metformin’s disease modifying properties.  

Enhancing clearance of alpha-synuclein by modulating ubiquitin and lysosomal systems is 

another strategy with promising early results. The identification of heat shock proteins that 

act as "chaperones" by promoting the transfer of excessive alpha-synuclein to the ubiquitin 

and lyosomal systems for clearance has led to testing compounds that could enhance this 

pathway, such as latrepirdine, an anti-histamine, which has recently been shown to stimulate 

autophagy and reduce accumulation of α-synuclein in vitro and in vivo, and further testing is 

underway126 NAB2, a novel small molecule, has recently been shown to promote endosomal 

transport events via action on the ubiquitin ligase Rsp5/Nedd4 – “resetting” vesicle tracking 

homeostasis and reversing multiple pathological phenotypes caused by alpha-synuclein in 

vitro.28,29 

GCase, an enzyme involved in modulating lysosomal function and folding of alpha-synuclein, 

is encoded by the gene GBA1; mutations of which account for up to 25% of young onset PD 

patients,127 are associated with reduced GCase activity and increased neocortical 

accumulation of aggregates of αlpha-synuclein.128  Reduced levels of GCase activity are 

seen in the SN of patients with sporadic PD, while increased expression of alpha-synuclein 

in cell models is associated with reduced GCase activity. Therefore, targeting GCase to 

increase its activity may increase alpha-synuclein metabolism and reduce its accumulation.  

Intracerebral injection of GCase via a AAV viral vector delivery method increased activity of 

GCase and reduced accumulation of alpha-synuclein and tau and improved and reversed 

cognitive deficits,129 while ambroxol, a secretolytic agent licensed for used in the treatment of 

respiratory diseases, has been shown to act as a chaperone molecule and thus increase the 

clearance of alpha synuclein.130–132  Further testing in a Thy1-Alpha-Synuclein mouse model 

is planned.  

Though the identification of these new potential targets and preliminary results are 

encouraging, studies with these novel compounds are still very early in development.  

 

Other / uncertain / multi-pathway targeting: 

A number of neuroprotective agents currently in clinical trials have multiple or uncertain 

mechanisms that may act on several pathways related to pathological processes in PD. 



Data from in vitro and in vivo studies suggest that GM1 ganglioside, a component of 

neuronal cell membranes, affects multiple pathways implicated in the pathogenesis of PD - 

modulating intracellular calcium homeostasis, mitochondrial function, lysosomal integrity and 

preventing aggregation of alpha synuclein,133,134,135 while two subsequent RCT’s showed 

encouraging effects on motor function in PD.135,136 While purified GM1 is well tolerated, and 

has shown encouraging results through careful trial design and placebo control, the existing 

data cannot conclude that the major long term effects are more than symptomatic only. 

Given that this agent is currently produced from bovine brain tissue, GM1 has also raised 

public safety concerns and alternative methods of production using synthetic analogues or 

ovine sources are currently being investigated. 

Exenatide is a synthetic glucagon-like peptide-1 (GLP-1) agonist licensed for the treatment 

of type 2 diabetes, and improves glycaemic control via activation of the GLP-1 receptor.137  

Though their role in the CNS is unclear, GLP-1 receptor stimulation using exenatide in vitro 

has neuroprotective, anti-inflammatory and anti-apoptotic effects, and exerts neurotrophic 

effects, stimulates mitochondrial biogenesis and enhances synaptic plasticity.138,139 In views 

of these effects, exenatide has been investigated in multiple animal toxin models of PD and 

demonstrated neuroprotective and neurorestorative effects in comparable human doses 

possibly via anti-inflammatory effects140,141 or related to stimulation of neurogenesis.142 It also 

demonstrated positive effects on non-dopaminergic impairments, reversed non-motor 

behavioural impairments, and improved learning and memory performance.143,144 In a small, 

open label RCT, exenatide exposure led to a mean advantage of 7.0 points on the MDS-

UPDRS Part III which persisted after a 12 month “wash-out” period, together with 

improvements in the Mattis Dementia Rating scale and well as other non-motor areas.145,146 

While clearly encouraging, the existing trial data is open label, and thus should not be 

interpreted as proof of efficacy in PD. Furthermore there is a great deal of mechanistic 

uncertainty regarding this agent, and exenatide has also been linked to a small increased 

risk of pancreatitis in patients with diabetes.  A larger, double blind trial using a once weekly, 

long acting form of exenatide is underway (Clinical trials.gov Identifier NCT01971242).  

In view of consistent epidemiological studies suggesting a 50% reduced risk of developing 

PD in smokers,147,148 nicotine is being investigated for its potentially disease modifying 

properties.  While in vitro data suggest possible mechanism of protection - nicotine inhibits 

alpha-synuclein fibrillation and reduce oxidative stress149,150 while stimulation of the a7, a4B2 

and a4 subunit of the nicotinic Ach receptor modulates inflammatory pathways and calcium 

homeostasis,151,152 nicotine’s effects in animal models of PD are conflicting, with 

discrepancies regarding dose, level of protection and dosing regimen 153,154,155,156. Though 

conflicting results from pre-clinical trials may be explained by differences in methodology – at 

best the results are inconclusive.  Results from human trials suggest a beneficial role in 

reducing dyskinesia, but evidence for neuroprotection is as yet unconvincing. Nevertheless, 

an RCT using transdermal nicotine patches in 40 PD has been completed and results 

awaited (Clinical trials.gov NCT00873392).   

 

Neuroprotection against cognitive decline: 

Cognitive impairments have a significant impact on quality of life - dementia is common in 

the advanced stage of PD, affecting up to 80% of patients,157 and is often used as a 

milestone heralding impending residential care and mortality, but cognitive deficits are seen 



in 24% of patients even at diagnosis158, and mild cognitive impairment can occur early in the 

course of PD.2 These deficits can worsen motor disabilities seen in PD, and at all stages are 

a significant factor contributing to a poorer quality of life.2 Historically, the augmentation of 

neurotransmitter deficits have represented more relevant pharmaceutical targets for 

treatments, and currently, the acetylcholinesterase inhibitor rivastigmine is the only licensed 

therapy for cognitive symptoms in PD dementia (PDD) or Dementia with Lewy bodies (DLB), 

with evidence suggesting positive effects on cognition, behavioural disturbance and ability to 

perform activities of daily living,159 (evidence for the use of menantine in PDD is currently 

unclear and further studies are needed).  Unfortunately, acetylcholinesterase inhibitors can 

often worsen motor deficits, and only aim to correct the end result of neurodegeneration, and 

therefore do little to affect the progression of the disease.  Despite the unmet need for 

additional treatments of cognitive dysfunction in PDD and DLB, there are only two advanced 

stage clinical trials underway - donepezil, an acetylcholinesterase inhibitor, and atomoxetine, 

a selective noradrenalin reuptake inhibitor, are in phase 2/3 clinical trial testing in patients 

with PDD based on previous favourable effects on cognition and behaviour.  To date, there 

have been no clinical trials to so far investigate potential disease modifying therapies in PDD 

or DLB.   

The neuropathology underlying PDD is heterogeneous and results from previous studies 

have been variable, but it is strongly speculated that alpha-synuclein spread from the 

brainstem to limbic and neocortical structures is the major contributor to emerging dementia 

in PD.160 Therefore, it is a reasonable to assume that strategies to inhibit the formation and 

propagation of alpha-synuclein may halt cognitive and motor decline.  However, 50% of 

patients with PDD also have amyloid-B plaques and hyperphosphorylated tau-containing 

neurofibrillary tangles – usually seen in the brains of patients with AD and furthermore, this 

co-morbid pathology may act synergistically with LB’s and LN’s t and confer a worse 

prognosis.161–164  Further evidence from genetic studies lend support to suggest a link 

between tau and PD -  the H1/H1 subhaplotype of the gene that encodes tau, MAPT, has 

been associated with increased tau expression in humans,165 is associated with poor 

memory performance in PD,166 and, through recent genome-wide association studies, has 

been identified as an independent risk factor for the development of PD165167 and PDD.168 

This growing evidence supporting the role of tau in Parkinson’s disease had led some to 

speculate that targeting tau phosphorylation and formation may be of benefit in preventing 

cognitive decline, and that disease modifying therapy or strategies to target tau in AD may 

also be of benefit to a subset of patients with PDD. 

Glycogen synthase-kinase 3b (GSK-3), is an enzyme involved in the phosphorylation of tau, 

and efforts at inhibition with compounds in human trials has so far proved disappointing.  

Valproate showed no clinical efficacy in Phase 3 trials,169 while micro-doses of lithium, 

previously shown to prevent oxidative-stress-induced alpha-synuclein accumulation and 

neurodegeneration in a transgenic model of PD,170 demonstrated stabilisation of cognitive 

function in AD patients,171 but adverse effects affected subsequent follow up.  Efforts are 

further advanced with derivatives of methylene blue – a compound that has already 

demonstrated neuroprotection and reversed behavioural deficits in a rotenone model of PD 

possibly by rescuing mitochondrial function and reducing free-radical formation.172 TRx0237, 

a derivative of methylene blue, has been shown to reduce tau aggregation and inflammation 

with associated positive effects on behaviour in vivo, although studies are 

conflicting,173174while in subsequent Phase II trials of AD patients, it reduced the rate of 



cognitive decline (though no benefit was seen at high doses).175 Phase 3 trials are currently 

underway. 

Tau hyperphosporylation has been speculated to reduce stabilisation of microtubules (MT), 

exacerbating neuronal dysfunction.  In view of this, small molecule MT stabilizing drugs 

previously used in the treatment of cancers are being re-purposed to investigate their utility 

in the treatment of tauopathies. In aged transgenic mouse models with established tau 

pathology (hereby modelling a human setting) epothilone D significantly reduced tau 

pathology, prevented the loss of hippocampal neurons and synapses, and improved 

cognitive performance.176Though these results are encouraging, and may lead to the 

identification of further brain penetrating small molecule MT stabilising compounds, they are 

still very early in development and have not yet been tested in clinical trials. 

Despite the encouraging number of compounds with potentially positive effects on cognition, 

there are numerous hurdles that need to be addressed before effective disease modifying 

therapies targeting cognition can be achieved.  Identifying an appropriate target for 

intervention is required through greater understanding of the pathological process underlying 

cognitive dysfunction. Despite the large amount of evidence suggesting a role for alpha-

synuclein in the development of cognitive (and motor) symptoms, there is a marked 

heterogeneity in PDD patients – some non-demented patients with PD have been shown to 

have large amounts of cortical alpha-synuclein,177 while some demented individuals have 

demonstrated minimal cortical alpha-synuclein at post-mortem,178. Furthermore the 

interaction between AB and alpha-synuclein and correlation of cognitive function is yet to be 

elucidated. In addition, the timing of the intervention is important, as it remains to be seen 

whether halting alpha-synuclein aggregation or tau hyperphosphorylation in already 

symptomatic individuals could halt cognitive decline.  Biomarker studies have recently 

indicated PDD patients are more likely to have increased CSF levels of t-tau and decreased 

AB1-42 than in PD,179 while non-tremor dominant PD patients are more likely to develop 

dementia and manifest concurrent AB pathology180,181 and it is reasonable to assume that 

further advances in biomarker studies, incorporating CSF, neuroimaging and biochemical 

markers together with further identification of clinical subtypes of PDD patients more likely to 

develop dementia, may help clinicians and trialists select the subgroup of individuals most 

appropriate for early intervention. 

 

Conclusion 

As things stand, double blind data supporting major clinically relevant effects have not yet 

been found for any agent, but there are several drugs that have been taken to clinical trials 

based on the existing neurotoxin animal models that may yet be shown to have relevant 

neuroprotective effects. 

Many agents that appear to have beneficial effects on neuronal cell biology and may be 

useful in PD often do not survive beyond Phase 1 clinical trials because of toxicity.  

However, this hurdle can to some extent be avoided by prioritising agents already licensed 

for human use i.e. drug repositioning/repurposing.  The linked clinical trials initiative182 

launched by the Cure Parkinson’s trust is a way of identifying which licensed drugs may be 

effectively repositioned for PD and provides a rapid and cost efficient signal of effect to add 

to animal model data to allow subsequent prioritisation of larger scale investment. This said, 



agents with major effects on neurodegenerative processes may also have long-term 

consequences for e.g. inflammation and/or immunosurveillance for malignant change in 

other body tissues, and these aspects must be considered in the follow up of patients 

exposed to these drug classes. 

High throughput screening approaches are also useful to help select which of many 

thousands of compounds offers the most promise using in vitro assays e.g. measuring 

effects on alpha synuclein aggregation or mitochondrial function. Indeed it appears 

increasingly likely that direct targeting of alpha synuclein aggregation may become possible, 

while other studies demonstrate that up regulation of proteosomal or lysosomal systems, 

and/or promotion of chaperone molecules that can reduce alpha synuclein aggregation may 

be feasible, thus opening further potential new therapeutic targets. 

Efforts are underway to accurately identify an “at risk” population of PD before significant 

clinical symptoms occur – possibly an essential first step before neurodegeneration 

progresses beyond the reach of any possible neuroprotective agent. This parallels the need 

to identify a highly sensitive and specific biomarker of PD to allow high-risk individuals to be 

distinguished from people with little or no risk of developing neurodegeneration. This is of 

utmost importance not only to be confident about efficacy but also to minimise the risks of 

exposing healthy people to potential adverse events that may accompany exposure to 

potential disease modifying drugs. The progression of symptoms in PD is heavily influenced 

by factors including clinical phenotype, age, and genotype and so in future, it may be more 

helpful to classify PD and other neurodegenerative diseases as clinicopathological entities 

rather than clinical syndromes - which could help define subsets of the PD population with 

more individualised biomarkers of disease activity, more accurately gauge prognosis and aid 

selection of specific disease modifying therapies e.g. patients at higher risk of PDD. 

Although PDD can have a significant impact on quality of life, there is only a single, modestly 

effective symptomatic therapy for it and no treatments proven to slow its progression.  

Growing genetic, biochemical and pathological evidence implicates that tau and alpha-

synuclein are involved in or share converging pathways in the pathogenesis of PD, and can 

influence development of cognitive impairment in patients with PD.  These developments 

have helped identify new targets for potential disease modifying therapies and it is clear that 

agents that only aim to prevent nigro-striatal degeneration may only have limited potential or 

may need to be combined with agents that target multiple pathways.  

Many of the agents discussed have potential for further investigation – however it remains to 

be seen whether any will prove to effective neuroprotective therapies for PD. This said, the 

rate of continued advances in many areas suggests, it is reasonable to remain optimistic that 

PD may be transformed from a continually progressive, disabling disease to a chronic, more 

manageable course.   

 

 

 

Review criteria 



PubMed was searched for articles published between September 1989 and July 2014. 

MeSH search terms were “Parkinson’s disease” alone and in combination with “disease 

modification", “neuroprotection”, “clinical trials”, “alpha-synuclein”, “dementia”, “cognitive 

impairment”, “pathogenesis”, “animal models”, “mitochondrial”, “biomarkers”, “treatments”.  

Only papers in English were reviewed. Articles were selected for their relevance, with a 

preference for new papers. Some other relevant papers known by the authors were also 

included. 

 

Display items: 

Table 1. Recent high profile trials of potential neuroprotective agents in PD. While it remains 

possible that 1 or more of these approaches has beneficial neuroprotective effects for PD, 

none have data to convincingly support clinically relevant neuroprotection when 

administered in isolation according to the clinical trial protocols used. DS- Delayed Start. PA- 

Parallel group. UPDRS – Unified Parkinson’s disease rating scale.  DA – Dopaminergic.  

Drug and 

class of 

evidence 

 

Mechanism 

of action 

Evidence of 

neuroprotection from 

pre-clinical studies 

Evidence of neuroprotection from 

clinical trials and level of evidence 

 

Rasagilin

e 

 

Antioxidant 

MAO 

inhibitor 

Anti-

apoptotic 

Protected DA neurons 

in MPTP and 6-OHDA 

models of PD 

Increased expression 

of BDNF, GDNF, and 

NGF183 

Phase 3 (DS)  

Inconclusive. 1mg rasagiline demonstrated 

significance but was not repeated at 2mg 

(Class 1b).  Small change in UPDRS made 

results difficult to interpret43  

Creatine 

 

Improves 

mitochondri

al 

bioenergetic

s 

Antioxidant 

Protected DA neurons 

in MPTP and 6-OHDA 

models of PD184 

Phase 3 (PA) 

Trial involving 1,741 patients terminated 

early due to lack of efficacy (Class 1b)17 

Co-

enzyme 

Q10 

(ubiquino

ne) 

 

Electron 

carrier for 

mitochondri

al complex I 

& II 

Antioxidant 

Protected DA neurons 

in MPTP mouse model 

and delayed 

progression of PD in 

Earlier phase II study  - 

non-significant 

advantage in UPDRS 

scores121 

Phase 3 (PA) 

Trial terminated due to lack of efficacy over 

placebo (Class 1b)185 

Cogane  

(PYM500

28)  

 

Promotes 

release of 

GDNF and 

BDNF 

Reverses MPP+-

induced neuronal 

atrophy in 

mesencephalic 

neurons in vitro186 

Protected DA neurons 

in MPTP models of 

Phase 3 (PA) 

Trial halted. No benefits over placebo 

identified (Class 1b)187 



PD186 

Mitoquino

ne 

(MitoQ) 

Antioxidant 

Mitochondri

al 

bioenergetic 

Protected DA neurons 

from MPTP and 6-

OHDA induced 

toxicity188 

 

Phase 3 (PA) 

No benefit over placebo.  However, study 

had small sample size and may not have 

reached adequate levels of brain 

penetrance (Class 2b)189 

TCH346 Anti-

apoptotic 

Protected DA neurons 

in vitro and MPTP 

model18 

Phase 2  

There were no significant differences 

between groups (Class 1b)18 

CERE-

120  

(AAV 

neurturin) 

Intraputami

nal and 

intranigral 

injection of 

GDNF 

analogue 

GDNF protects DA 

neurons in vitro and 

mouse and non-human 

primate models of 

PD190 

Intraputaminal AAV2-

neurturin injection in 

RCT superior to sham 

surgery190 

Phase 2b (PA) 

Intraputaminal and SNpc  AAV2-neurturin 

injection in RCT: No statistically significant 

efficacy on the primary endpoint (Class 2c).  

Secondary endpoint – Off periods in self-

reported motor diaries did significantly 

improve (Class 2c)191 

 

 

Fig.1 Proposed mechanisms involved in the pathogenesis of PD, with the identification of 

potential targets for intervention highlighted and the relevant drugs thought to act on these 

pathways. (1) Targeting native coils of alpha-synuclein expression, (2) upregulation of 

chaperone molecules to promote clearance of alpha-synuclein (e.g. latrepirdine, ambroxol), 

(3) targeting enzymes such as protein phosphatase 2A (PP2A) that enhance de-

phosphorylation of alpha-synuclein at Ser129 (e.g. metformin), (4) facilitation of the UPS 

system to clear unwanted alpha-synuclein (e.g.NAB2), (5) enhancing liposomal function and 

metabolism of alpha-synuclein by increasing GCase activity (e.g. resveratrol), (6) directly 

targeting toxic alpha-nuclein by active/passive immunisation (e.g. PRX02, Affitope) or 

directly blocking its aggregation (e.g. ELN484228), (7) prevent the propagation of alpha-

synuclein from affected to unaffected cells, (8) targeting Ca1.3V LTCC to reduce calcium 

influx (e.g. isradipine), (9) modulation of the NMDA receptor to limit activation of excitatory 

pathways (e.g. simvastatin), (10) targeting inflammatory pathways (e.g. pioglitazone, 

AZD3241),  (11) modulation of SIRT1 to enhance mitochondrial biogenesis and reduce 

activation of proinflammatory pathways (e.g. resveratrol), (12) reducing oxidative stress 

pathways (e.g. inosine, N-acetylcysteine, zonisamide), (13) reducing iron accumulation (e.g. 

deferiprone), (14) targeting apoptotic pathways (e.g. GCSF). 

UPS, ubiquitin-proteasome system; LTCC, L-type calcium channels; NMDA, N-methyl-D-

aspartate; ROS, reactive oxygen species; SIRT1, sirtuin1; PGC-1-alpha, peroxisome 

proliferator-activated receptor gamma coactivator 1-alpha; P-129, serine residue position 

129. 

 

Table 2. Summary of evidence of the current candidates in clinical trial testing 



Drug Proposed 

mechanism(s) of 

action 

Summary of pre-clinical 

evidence 

Summary of clinical 

evidence 

Isradipine Calcium channel 

blocker 

In vitro and vivo evidence 

of neuroprotection in 

MPTP and 6-OHDA 

models by reverting DA 

neurons to juvenile 

sodium channel 

pacemaking 

mechanism37,38 

Brain penetrance192 

 

10mg was highest dose 

tolerated in RCT of 99 PD 

patients – modest 

advantage of UPDRS III39 

 

Inosine Antioxidant 

Raises serum urate 

levels50 

In vitro and in vivo 

evidence in 6-OHDA and 

MPTP of 

neuroprotection193 

Able to raise serum and 

CSF urate in RCT of 75 

PD patients, and 

associated with 

favourable rate of 

progression of UPDRS 

after 24 months51 

Deferiprone Anti-oxidant 

Iron chelator 

In vitro evidence for 

protection against MPP+ 

toxin related 

degeneration57 

In vivo evidence in 6-

OHDA models preserving 

DA neurons by reducing 

hydroxl formation58 

Established brain 

penetrance194 

 

RCT (DS design) of 40 

PD patients reduced iron 

levels in SN with reduced 

UPDRS III scores in ES 

group sustained at 12 

months, though waned 

after 18 months59 

NAC Antioxidant 

Precursor of GSH 

In vivo evidence in MPTP 

and transgenic mice 

overexpressing α-

synuclein, of increased 

GSH levels associated 

with prevention of DA cell 

death and motor 

abnormalities, with 

reduction of alpha-

synuclein levels in 

brain66,195,196 

 

Phase 1 trial of 12 PD 

patients raised levels of  

CSF GSH and well 

tolerated67 

Zonisamide Anti-oxidant In vitro and vivo evidence 

in 6-OHDA, MPTP and 

rotenone models in dose 

dependent manner of 

RCT of PD patients 

symptomatic improvement 

in motor function200 



neuroprotection of DN 

neurons via modulation of 

calcium homeostasis, 

enhancing GABA release 

and upregulation of 

expression of mRNA 

encoding astrocytic anti-

oxidative and 

neurotrophic factors but 

conflicting doses71,197–199 

 

Pioglitazone Anti-inflammatory 

Enhances 

mitochondrial 

biogenesis 

In vivo evidence in LPS, 

rotenone and non-human 

MPTP primate models of 

improved motor and 

behavioural effects , with 

reduced microglial 

activation, DA cell 

loss86,87,201 

No clinical data  - Phase II 

trial currently underway 

AZD3241 Anti-inflammatory 

Inhibits MPO  

Influences alpha-

synuclein 

aggregation 

In vitro evidence and in 

vivo evidence in 6-OHDA 

model of reduced 

inflammatory 

cytokines97,202 

 

RCT of 51 PD patients – 

well tolerated, decreased 

MPO activity98 

GM1   In vitro evidence of 

reducing alpha-synuclein 

aggregation, modulating 

lysosomal systems133 

In vivo evidence in MPTP 

non-human models of 

neurotropic effects with 

motor and cognitive 

improvements134 

 

RCT of 26 PD patients 

showed symptomatic 

improvements of UPDRS 

III after 5 years135 

RCT (DS design) of 77 

PD patients improved 

UPDRS III scores of ES 

group, but both groups 

worsened following 

washout136 

Exenatide GLP-1 agonist 

Anti-inflammatory, 

anti-apoptotic 

effects, neurotrophic 

effects, 

mitochondrial 

enhancer 

 

In vitro evidence of effects 

on reducing inflammation, 

apoptosis, and enhancing 

neurotropic effects, 

mitochondrial biogenesis, 

and synaptic 

plasticity138,139 

In vivo evidence in 6-

OHDA, MPTP, LPS 

models of neuroprotective 

and neurorestorative 

effects on DA neurons, 

Open label RCT of 20+20 

PD patients showed 

improvements in MDS-

UPDRS III and memory, 

sustained after 

washout145,203 

 



with improved motor and 

memory performance140–

144 

 

Transdermal 

nicotine 

Reduced alpha-

synuclein 

aggregation 

Modulates calcium 

homeostasis 

Modulates pro-

inflammatory 

pathways 

In vitro evidence to inhibit 

alpha-synuclein 

aggregation, reducing 

oxidative stress by 

modulating calcium 

homeostasis149–152 

In vivo evidence in 6-

OHDA, MPTP, rotenone 

models of halting DA cell 

loss, but conflicting 

results, and doses153–156 

 

Human trials conflicting – 

beneficial in 4 trials, no 

effect in 4 trials, 

worsening motor function 

in 1 trial150 

GCSF Anti-apoptotic 

Neurotropic factor 

In vitro evidence of 

neuroprotective of DA 

cells via activation of anti-

apoptotic STAT3 and AKT 

pathways, 
204neurotrophism,205 

stimulating neurogenesis 

through reciprocal 

interaction with VEGF 

activation206  and 

modulation of pro-

inflammatory pathways.207 

In vivo evidence in MPTP 

models models, though at 

doses higher than used in 

humans208,209 

 

No clinical data yet 

EPO Anti-inflammatory In vitro evidence of DA 

protection with 

proliferation of 

astrocytes210 

In vivo evidence in 6-

OHDA models reduced 

inflammation in DA 

neurons210 

 

Phase 1 trial of 10 PD 

patients showed 

improvements in UPDRS 

III, persisting for 30 

weeks211 

RCT of 26 PD patients 

showed no effect on 

motor symptoms but 

some benefits on 

cardiovascular autonomic 

function and cognition212 
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