3,230 research outputs found

    Convexity of reduced energy and mass angular momentum inequalities

    Full text link
    In this paper, we extend the work in \cite{D}\cite{ChrusLiWe}\cite{ChrusCo}\cite{Co}. We weaken the asymptotic conditions on the second fundamental form, and we also give an L6L^{6}-norm bound for the difference between general data and Extreme Kerr data or Extreme Kerr-Newman data by proving convexity of the renormalized Dirichlet energy when the target has non-positive curvature. In particular, we give the first proof of the strict mass/angular momentum/charge inequality for axisymmetric Einstein/Maxwell data which is not identical with the extreme Kerr-Newman solution.Comment: 27 page

    Editorial: Editors’ showcase: structural materials

    Get PDF

    Heat Conduction and Magnetic Phase Behavior in Electron-Doped Ca_{1-x} La_x MnO_3(0 <= x <= 0.2)

    Full text link
    Measurements of thermal conductivity (kappa) vs temperature are reported for a series of Ca_{1-x} La_x MnO_3(0 <= x <= 0.2) specimens. For the undoped (x=0), G-type antiferromagnetic compound a large enhancement of kappa below the Neel temperature (T_N ~ 125 K) indicates a strong coupling of heat-carrying phonons to the spin system. This enhancement exhibits a nonmonotonic behavior with increasing x and correlates remarkably well with the small ferromagnetic component of the magnetization reported previously [Neumeier and Cohn, Phys. Rev. B 61 14319 (2000).] Magnetoelastic polaron formation appears to underly the behavior of kappa and the magnetization at x <= 0.02.Comment: submitted to PRB; 4 pp., 4 Fig.'s, RevTex

    Synthesis and characterization of atomically-thin graphite films on a silicon carbide substrate

    Full text link
    This paper reports the synthesis and detailed characterization of graphite thin films produced by thermal decomposition of the (0001) face of a 6H-SiC wafer, demonstrating the successful growth of single crystalline films down to approximately one graphene layer. The growth and characterization were carried out in ultrahigh vacuum (UHV) conditions. The growth process and sample quality were monitored by low-energy electron diffraction, and the thickness of the sample was determined by core level x-ray photoelectron spectroscopy. High-resolution angle-resolved photoemission spectroscopy shows constant energy map patterns, which are very sharp and fully momentum-resolved, but nonetheless not resolution limited. We discuss the implications of this observation in connection with scanning electron microscopy data, as well as with previous studies

    Mass matrix Ansatz and lepton flavor violation in the THDM-III

    Full text link
    Predictive Higgs-fermion couplings can be obtained when a specific texture for the fermion mass matrices is included in the general two-Higgs doublet model. We derive the form of these couplings in the charged lepton sector using a Hermitian mass matrix Ansatz with four-texture zeros. The presence of unconstrained phases in the vertices phi-li-lj modifies the pattern of flavor-violating Higgs interactions. Bounds on the model parameters are obtained from present limits on rare lepton flavor violating processes, which could be extended further by the search for the decay tau -> mu mu mu and mu-e conversion at future experiments. The signal from Higgs boson decays phi -> tau mu could be searched at the large hadron collider (LHC), while e-mu transitions could produce a detectable signal at a future e mu-collider, through the reaction e mu -> h0 -> tau tau.Comment: 17 pages, 9 figure

    Thermodynamic perturbation theory for dipolar superparamagnets

    Full text link
    Thermodynamic perturbation theory is employed to derive analytical expressions for the equilibrium linear susceptibility and specific heat of lattices of anisotropic classical spins weakly coupled by the dipole-dipole interaction. The calculation is carried out to the second order in the coupling constant over the temperature, while the single-spin anisotropy is treated exactly. The temperature range of applicability of the results is, for weak anisotropy (A/kT << 1), similar to that of ordinary high-temperature expansions, but for moderately and strongly anisotropic spins (A/kT > 1) it can extend down to the temperatures where the superparamagnetic blocking takes place (A/kT \sim 25), provided only the interaction strength is weak enough. Besides, taking exactly the anisotropy into account, the results describe as particular cases the effects of the interactions on isotropic (A = 0) as well as strongly anisotropic (A \to \infty) systems (discrete orientation model and plane rotators).Comment: 15 pages, 3 figure

    Graphene oxide functionalized long period fiber grating for highly sensitive hemoglobin detection

    Get PDF
    We present graphene oxide (GO) nanosheets functionalized long period grating (LPG) for ultrasensitive hemoglobin sensing. The sensing mechanism relies on the measurement of LPG resonant intensity change induced by the adsorption of hemoglobin molecules onto GO, where GO as a bio-interface linkage provides the significant light-matter interaction between evanescent field and target molecules. The deposition technique based on chemical-bonding associated with physical-adsorption was developed to immobilize GO nanosheets on cylindrical fiber device. The surface morphology was characterized by scanning electron microscope, atomic force microscopy, and Raman spectroscopy. With relatively thicker GO coating, the refractive index (RI) sensitivity of GO-LPG was extremely enhanced and achieved −76.5 dB/RIU, −234.2 dB/RIU and +1580.5 dB/RIU for RI region of 1.33-1.38, 1.40-1.44 and 1.45-1.46, respectively. The GO-LPG was subsequently implemented as an optical biosensor to detect human hemoglobin giving a sensitivity of 1.9 dB/(mg/mL) and a detectable concentration of 0.05 mg/mL, which was far below the hemoglobin threshold value for anemia defined by World Health Organization. The proposed GO-LPG architecture can be further developed as an optical biosensing platform for anemia diagnostics and biomedical applications

    R-parity violation effect on the top-quark pair production at linear colliders

    Full text link
    We investigate in detail the effects of the R-parity lepton number violation in the minimal supersymmetric standard model (MSSM) on the top-quark pair production via both ee+e^--e^+ and γγ\gamma-\gamma collision modes at the linear colliders. We find that with the present experimental constrained /R\rlap/{R} parameters, the effect from /R\rlap/{R} interactions on the processes e+ettˉe^+e^-\to t\bar{t} and e+eγγttˉe^+e^- \to \gamma\gamma \to t\bar{t} could be significant and may reach -30% and several percent, respectively. Our results show that the /R\rlap/{R} effects are sensitive to the c.m.s. energy and the relevant /R\rlap/{R} parameters. However, they are not sensitive to squark and slepton masses when mq~400GeVm_{\tilde{q}} \geq 400 GeV (or ml~300GeVm_{\tilde{l}} \geq 300 GeV) and are almost independent on the tanβ\tan\betaComment: Accepted by Phys.Rev.

    Weblog patterns and human dynamics with decreasing interest

    Full text link
    Weblog is the fourth way of network exchange after Email, BBS and MSN. Most bloggers begin to write blogs with great interest, and then their interests gradually achieve a balance with the passage of time. In order to describe the phenomenon that people's interest in something gradually decreases until it reaches a balance, we first propose the model that describes the attenuation of interest and reflects the fact that people's interest becomes more stable after a long time. We give a rigorous analysis on this model by non-homogeneous Poisson processes. Our analysis indicates that the interval distribution of arrival-time is a mixed distribution with exponential and power-law feature, that is, it is a power law with an exponential cutoff. Second, we collect blogs in ScienceNet.cn and carry on empirical studies on the interarrival time distribution. The empirical results agree well with the analytical result, obeying a special power law with the exponential cutoff, that is, a special kind of Gamma distribution. These empirical results verify the model, providing an evidence for a new class of phenomena in human dynamics. In human dynamics there are other distributions, besides power-law distributions. These findings demonstrate the variety of human behavior dynamics.Comment: 8 pages, 1 figure
    corecore