3,013 research outputs found

    Lepton distribution as a probe of new physics in production and decay of the t quark and its polarization

    Get PDF
    We investigate the possibilities of studying new physics in various processes of t-quark production using kinematical distributions of the secondary lepton coming from decay of t quarks. We show that the angular distributions of the secondary lepton are insensitive to the anomalous tbW vertex and hence are pure probes of new physics in a generic process of t-quark production. The energy distribution of the lepton is distinctly affected by anomalous tbW couplings and can be used to analyze them independent of the production process of t quarks. The effects of t polarization on the distributions of the decay lepton are demonstrated for top-pair production process at a gamma-gamma collider mediated by a heavy Higgs boson.Comment: 15 pages, 7 figures, uses axodraw.sty (included), references added. v3 to appear in Journal of High Energy Physics. Incorporates minor changes in the discussion on radiative corrections which do not affect the results. Typo in reference correcte

    Failure regime in (1+1) dimensions in fibrous materials

    Full text link
    In this paper, we introduce a model for fracture in fibrous materials that takes into account the rupture height of the fibers, in contrast with previous models. Thus, we obtain the profile of the fracture and calculate its roughness, defined as the variance around the mean height. We investigate the relationship between the fracture roughness and the fracture toughness.Comment: 4 pages, 4 figures.eps, Revte

    Aligning archive maps and extracting footprints for analysis of historic urban environments.

    Get PDF
    Archive cartography and archaeologist's sketches are invaluable resources when analysing a historic town or city. A virtual reconstruction of a city provides the user with the ability to navigate and explore an environment which no longer exists to obtain better insight into its design and purpose. However, the process of reconstructing the city from maps depicting features such as building footprints and roads can be labour intensive. In this paper we present techniques to aid in the semi-automatic extraction of building footprints from digital images of archive maps and sketches. Archive maps often exhibit problems in the form of inaccuracies and inconsistencies in scale which can lead to incorrect reconstructions. By aligning archive maps to accurate modern vector data one may reduce these problems. Furthermore, the efficiency of the footprint extraction methods may be improved by aligning either modern vector data or previously extracted footprints, since common elements can be identified between maps of differing time periods and only the difference between the two needs to be extracted. An evaluation of two alignment approaches is presented: using a linear affine transformation and a set of piecewise linear affine transformations

    A hydrogeomorphological approach to quantification of groundwater discharge to streams in South Africa

    Get PDF
    In South Africa, the flow requirements for maintaining the normal functioning of aquatic ecosystems is termed the “ecological reserve”, and these should be determined when a licence application for water allocation is processed. Determination of the ecological reserve entails investigation of the relationship between the major interactive components of the hydrologic cycle, namely groundwater and surface water bodies including rivers, lakes and estuaries. Information on groundwater discharge towards surface water bodies is critical for the water resource manager to make a decision regarding the amount of groundwater allocation that can be licensed without causing a negative impact on aquatic ecosystems. Existing techniques of hydrograph-separation are too subjective either due to the fact that assumptions of the techniques cannot be met in reality or that the parameters used in models do not have physical meanings. This paper presents a geomorphologic framework under which the quantification of groundwater from a hydrograph is discussed. A focus is placed on hydrogeomorphological typing that can be used to guide a process of separating groundwater discharge time series from hydrographs where a monthly groundwater discharge time series is required for comparison with instream flow requirements. For generating monthly groundwater discharge time series, a generic procedure is proposed, which is applied in a case study.Web of Scienc

    Current Helicity and Twist as Two Indicators of The Mirror Asymmetry of solar Magnetic Fields

    Full text link
    A comparison between the two tracers of magnetic field mirror asymmetry in solar active regions, twist and current helicity, is presented. It is shown that for individual active regions these tracers do not possess visible similarity while averaging by time over the solar cycle, or by latitude, reveals similarities in their behaviour. The main property of the dataset is anti-symmetry over the solar equator. Considering the evolution of helical properties over the solar cycle we find signatures of a possible sign change at the beginning of the cycle, though more systematic observational data are required for a definite confirmation. We discuss the role of both tracers in the context of the solar dynamo theory.Comment: 14 pages, 6 figure

    Observational Evidence of Quasi-27-Day Oscillation Propagating from the Lower Atmosphere to the Mesosphere over 20° N

    Get PDF
    By using meteor radar, radiosonde and satellite observations over 20° N and NCEP/NCAR reanalysis data during 81 days from 22 December 2004 to 12 March 2005, a quasi-27-day oscillation propagating from the troposphere to the mesosphere is reported. A pronounced 27-day periodicity is observed in the raw zonal wind from meteor radar. Spectral analysis shows that the oscillation also occurs in the meridional wind and temperature and propagates westward with wavenumber s = 1; thus the oscillation is of Rossby wave type. The oscillation attains a large amplitude of about 12 m s−1 in the eastward wind shear region of the troposphere. When the wind shear reverses, its amplitude rapidly decays, and the background wind gradually evolves to be westward. However, the oscillation can penetrate through the weak westward wind field due to its relatively large phase speed. After this, the oscillation restrengthens with its upward propagation and reaches about 20 m s−1 in the mesosphere. Reanalysis data show that the oscillation can propagate to the mid and high latitudes from the low latitudes and has large amplitudes over there. There is another interesting phenomenon that a quasi-46-day oscillation appears simultaneously in the troposphere, but it cannot penetrate through the westward wind field because of its smaller phase speed. In the observational interval, a quasi-27-day periodicity in outgoing long-wave radiation (OLR) and specific humidity is found in a latitudinal zone of 5–20° N. Thus the quasi-27-day oscillation may be an atmospheric response to forcing due to the convective activity with a period of about 27 days in the tropical region

    Disorder-induced phase transition in a one-dimensional model of rice pile

    Full text link
    We propose a one-dimensional rice-pile model which connects the 1D BTW sandpile model (Phys. Rev. A 38, 364 (1988)) and the Oslo rice-pile model (Phys. Rev. lett. 77, 107 (1997)) in a continuous manner. We found that for a sufficiently large system, there is a sharp transition between the trivial critical behaviour of the 1D BTW model and the self-organized critical (SOC) behaviour. When there is SOC, the model belongs to a known universality class with the avalanche exponent τ=1.53\tau=1.53.Comment: 10 pages, 7 eps figure

    Is Ocean Acidification Really a Threat to Marine Calcifiers? A Systematic Review and Meta-Analysis of 980+ Studies Spanning Two Decades

    Get PDF
    First published: 07 August 2022Ocean acidification is considered detrimental to marine calcifiers, but mounting contradictory evidence suggests a need to revisit this concept. This systematic review and meta-analysis aim to critically re-evaluate the prevailing paradigm of negative effects of ocean acidification on calcifiers. Based on 5153 observations from 985 studies, many calcifiers (e.g., echinoderms, crustaceans, and cephalopods) are found to be tolerant to near-future ocean acidification (pH ≈ 7.8 by the year 2100), but coccolithophores, calcifying algae, and corals appear to be sensitive. Calcifiers are generally more sensitive at the larval stage than adult stage. Over 70% of the observations in growth and calcification are non-negative, implying the acclimation capacity of many calcifiers to ocean acidification. This capacity can be mediated by phenotypic plasticity (e.g., physiological, mineralogical, structural, and molecular adjustments), transgenerational plasticity, increased food availability, or species interactions. The results suggest that the impacts of ocean acidification on calcifiers are less deleterious than initially thought as their adaptability has been underestimated. Therefore, in the forthcoming era of ocean acidification research, it is advocated that studying how marine organisms persist is as important as studying how they perish, and that future hypotheses and experimental designs are not constrained within the paradigm of negative effects.Jonathan Y. S. Leung, Sam Zhang, and Sean D. Connel

    A Statistical Study on Photospheric Magnetic Nonpotentiality of Active Regions and Its Relationship with Flares during Solar Cycles 22-23

    Full text link
    A statistical study is carried out on the photospheric magnetic nonpotentiality in solar active regions and its relationship with associated flares. We select 2173 photospheric vector magnetograms from 1106 active regions observed by the Solar Magnetic Field Telescope at Huairou Solar Observing Station, National Astronomical Observatories of China, in the period of 1988-2008, which covers most of the 22nd and 23rd solar cycles. We have computed the mean planar magnetic shear angle (\bar{\Delta\phi}), mean shear angle of the vector magnetic field (\bar{\Delta\psi}), mean absolute vertical current density (\bar{|J_{z}|}), mean absolute current helicity density (\bar{|h_{c}|}), absolute twist parameter (|\alpha_{av}|), mean free magnetic energy density (\bar{\rho_{free}}), effective distance of the longitudinal magnetic field (d_{E}), and modified effective distance (d_{Em}) of each photospheric vector magnetogram. Parameters \bar{|h_{c}|}, \bar{\rho_{free}}, and d_{Em} show higher correlation with the evolution of the solar cycle. The Pearson linear correlation coefficients between these three parameters and the yearly mean sunspot number are all larger than 0.59. Parameters \bar{\Delta\phi}, \bar{\Delta\psi}, \bar{|J_{z}|}, |\alpha_{av}|, and d_{E} show only weak correlations with the solar cycle, though the nonpotentiality and the complexity of active regions are greater in the activity maximum periods than in the minimum periods. All of the eight parameters show positive correlations with the flare productivity of active regions, and the combination of different nonpotentiality parameters may be effective in predicting the flaring probability of active regions.Comment: 20 pages, 5 figures, 4 tables, accepted for publication in Solar Physic
    corecore