80 research outputs found

    Docking and molecular dynamics simulations of the ternary complex nisin2:lipid II

    Get PDF
    Lanthionine antibiotics are an important class of naturally-occurring antimicrobial peptides. The best-known, nisin, is a commercial food preservative. However, structural and mechanistic details on nisin/lipid II membrane complexes are currently lacking. Recently, we have developed empirical force-field parameters to model lantibiotics. Docking and molecular dynamics (MD) simulations have been used to study the nisin2:lipid II complex in bacterial membranes, which has been put forward as the building block of nisin/lipid II binary membrane pores. A Ile1Trp mutation of the N-terminus of nisin has been modelled and docked onto lipid II models; the computed binding affinity increased compared to wildtype. Wild-type nisin was also docked onto three different lipid II structures and a stable 2:1 nisin:lipid II complex formed. This complex was inserted into a membrane. Six independent MD simulations revealed key interactions in the complex, specifically the N terminal engagement of nisin with lipid II at the pyrophosphate and C-terminus of the pentapeptide chain. Nisin2 inserts into the membrane and we propose this is the first step in pore formation, mediated by the nisin N-terminus–lipid II pentapeptide hydrogen bond. The lipid II undecaprenyl chain adopted different conformations in the presence of nisin, which may also have implications for pore formation

    Phenotypic and transcriptomic characterization of canine myeloid-derived suppressor cells

    Get PDF
    Myeloid-derived suppressor cells (MDSCs) are key players in immune evasion, tumor progression and metastasis. MDSCs accumulate under various pathological states and fall into two functionally and phenotypically distinct subsets that have been identified in humans and mice: polymorphonuclear (PMN)-MDSCs and monocytic (M)-MDSCs. As dogs are an excellent model for human tumor development and progression, we set out to identify PMN-MDSCs and M-MDSCs in clinical canine oncology patients. Canine hypodense MHC class II-CD5-CD21-CD11b+ cells can be subdivided into polymorphonuclear (CADO48A+CD14-) and monocytic (CADO48A-CD14+) MDSC subsets. The transcriptomic signatures of PMN-MDSCs and M-MDSCs are distinct, and moreover reveal a statistically significant similarity between canine and previously published human PMN-MDSC gene expression patterns. As in humans, peripheral blood frequencies of canine PMN-MDSCs and M-MDSCs are significantly higher in dogs with cancer compared to healthy control dogs (PMN-MDSCs: p < 0.001; M-MDSCs: p < 0.01). By leveraging the power of evolution, we also identified additional conserved genes in PMN-MDSCs of multiple species that may play a role in MDSC function. Our findings therefore validate the dog as a model for studying MDSCs in the context of cancer

    Soil Respiration in Relation to Photosynthesis of Quercus mongolica Trees at Elevated CO2

    Get PDF
    Knowledge of soil respiration and photosynthesis under elevated CO2 is crucial for exactly understanding and predicting the carbon balance in forest ecosystems in a rapid CO2-enriched world. Quercus mongolica Fischer ex Ledebour seedlings were planted in open-top chambers exposed to elevated CO2 (EC = 500 µmol mol−1) and ambient CO2 (AC = 370 µmol mol−1) from 2005 to 2008. Daily, seasonal and inter-annual variations in soil respiration and photosynthetic assimilation were measured during 2007 and 2008 growing seasons. EC significantly stimulated the daytime soil respiration by 24.5% (322.4 at EC vs. 259.0 mg CO2 m−2 hr−1 at AC) in 2007 and 21.0% (281.2 at EC vs. 232.6 mg CO2 m−2 hr−1 at AC) in 2008, and increased the daytime CO2 assimilation by 28.8% (624.1 at EC vs. 484.6 mg CO2 m−2 hr−1 at AC) across the two growing seasons. The temporal variation in soil respiration was positively correlated with the aboveground photosynthesis, soil temperature, and soil water content at both EC and AC. EC did not affect the temperature sensitivity of soil respiration. The increased daytime soil respiration at EC resulted mainly from the increased aboveground photosynthesis. The present study indicates that increases in CO2 fixation of plants in a CO2-rich world will rapidly return to the atmosphere by increased soil respiration

    Detailed Anatomical and Electrophysiological Models of Human Atria and Torso for the Simulation of Atrial Activation

    Get PDF
    Atrial arrhythmias, and specifically atrial fibrillation (AF), induce rapid and irregular activation patterns that appear on the torso surface as abnormal P-waves in electrocardiograms and body surface potential maps (BSPM). In recent years both P-waves and the BSPM have been used to identify the mechanisms underlying AF, such as localizing ectopic foci or high-frequency rotors. However, the relationship between the activation of the different areas of the atria and the characteristics of the BSPM and P-wave signals are still far from being completely understood. In this work we developed a multi-scale framework, which combines a highly-detailed 3D atrial model and a torso model to study the relationship between atrial activation and surface signals in sinus rhythm. Using this multi scale model, it was revealed that the best places for recording P-waves are the frontal upper right and the frontal and rear left quadrants of the torso. Our results also suggest that only nine regions (of the twenty-one structures in which the atrial surface was divided) make a significant contribution to the BSPM and determine the main P-wave characteristics.This work was partially supported by the "VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica" from the Ministerio de Economia y Competitividad of Spain and the European Commission (European Regional Development Funds - ERDF - FEDER), Award Number: TIN2012-37546-C03-01 (Recipient: Ana Ferrer); the "Programa Estatal de Investigacion, Desarrollo e Innovacion Orientado a los Retos de la Sociedad" from the Ministerio de Economia y Competitividad and the European Commission (European Regional Development Funds - ERDF - FEDER), Award Number: TIN2014-59932-JIN (Recipient: Rafael Sebastion); and the "Programa Prometeo" from the Generalitat Valenciana, Award Number: 2012/030 (Recipient: Laura Martinez).Ferrer Albero, A.; Sebastián Aguilar, R.; Sánchez Quintana, D.; Rodriguez, JF.; Godoy, EJ.; Martinez, L.; Saiz Rodríguez, FJ. (2015). Detailed Anatomical and Electrophysiological Models of Human Atria and Torso for the Simulation of Atrial Activation. PLoS ONE. 10(11):1-29. https://doi.org/10.1371/journal.pone.0141573S129101

    Design and path planning for a remote-brained service robot

    No full text
    This article introduced an effective design method of robot called remote-brain, which is made the brain and body separated. It leaves the brain in the mother environment, by which we mean the environment in which the brain's software is developed, and talks with its body by wireless links. It also presents a real robot TUT06-B based on this method which has human-machine interaction, vision systems, manipulator etc. Then it discussed the path planning method for the robot based on ant colony algorithm in details, especially the Ant-cycle model. And it also analyzed the parameter of the algorithm which can affect the convergence. Finally, it gives the program flow chat of this algorithm

    An Evidential k-nearest Neighbors Combination Rule for Tree Species Recognition

    No full text
    International audienceThe task of tree species recognition is to recognize the tree species using photos of their leaves and barks. In this paper, we propose an evidential k-nearest neighbors (k-NN) combination rule. The proposed rule is adapted to classication problems where we have a large number of classes with an intra-class variability and an inter-class similarity like the problem of tree species recognition. Finally, we compare the performance of the proposed solution to the evidential k-NN
    corecore