2,297 research outputs found
Lamp modulator provides signal magnitude indication
Lamp modulator provides visible indication of presence and magnitude of an audio signal carrying voice or data. It can be made to reflect signal variations of up to 32 decibels. Lamp life is increased by use of a bypass resistor to prevent filament failure
On Adequacy of Two-point Averaging Schemes for Composites with Nonlinear Viscoelastic Phases
Finite element simulations on fibrous composites with nonlinear viscoelastic response of the matrix phase are performed to explain why so called two-point averaging schemes may fail to deliver a realistic macroscopic response. Nevertheless, the potential of two-point averaging schemes (the overall response estimated in terms of localized averages of a two-phase composite medium) has been put forward in number of studies either in its original format or modified to overcome the inherited stiffness of classical ”elastic” localization rules. However, when the material model and geometry of the microstructure promote the formation of shear bands, none of the existing two-point averaging schemes will provide an adequate macroscopic response, since they all fail to capture the above phenomenon. Several examples are presented here to support this statement.
Recommended from our members
Simulations of the Neutron Energy-Spectra at the Olympus Gate Environmental Monitoring Station Due to Historical Bevatron Operations
Microstructural enrichment functions based on stochastic Wang tilings
This paper presents an approach to constructing microstructural enrichment
functions to local fields in non-periodic heterogeneous materials with
applications in Partition of Unity and Hybrid Finite Element schemes. It is
based on a concept of aperiodic tilings by the Wang tiles, designed to produce
microstructures morphologically similar to original media and enrichment
functions that satisfy the underlying governing equations. An appealing feature
of this approach is that the enrichment functions are defined only on a small
set of square tiles and extended to larger domains by an inexpensive stochastic
tiling algorithm in a non-periodic manner. Feasibility of the proposed
methodology is demonstrated on constructions of stress enrichment functions for
two-dimensional mono-disperse particulate media.Comment: 27 pages, 12 figures; v2: completely re-written after the first
revie
Continuous ultrafiltration/diafiltration using a 3D‐printed two membrane single pass module
A 3D printed ultrafiltration/diafiltration (UF/DF) module is presented allowing the continuous, simultaneous concentration of retained (bio‐)molecules and reduction or exchange of the salt buffer. Differing from the single‐pass UF concepts known from the literature, DF operation does not require the application of several steps or units with intermediating dilution. In contrast, the developed module uses two membranes confining the section in which the molecules are concentrated while the sample is passing. Simultaneously to this concentration process, the two membranes allow a perpendicular in and outflow of DF buffer reducing the salt content in this section. The module showed the continuous concentration of a dissolved protein up to a factor of 4.6 while reducing the salt concentration down to 47% of the initial concentration along a flow path length of only 5 cm. Due to single‐pass operation the module shows concentration polarization effects reducing the effective permeability of the applied membrane in case of higher concentration factors. However, because of its simple design and the capability to simultaneously run UF and DF processes in a single module, the development could be economically beneficial for small scale UF/DF applications
Analysis of coupled heat and moisture transfer in masonry structures
Evaluation of effective or macroscopic coefficients of thermal conductivity
under coupled heat and moisture transfer is presented. The paper first gives a
detailed summary on the solution of a simple steady state heat conduction
problem with an emphasis on various types of boundary conditions applied to the
representative volume element -- a periodic unit cell. Since the results
essentially suggest no superiority of any type of boundary conditions, the
paper proceeds with the coupled nonlinear heat and moisture problem subjecting
the selected representative volume element to the prescribed macroscopically
uniform heat flux. This allows for a direct use of the academic or commercially
available codes. Here, the presented results are derived with the help of the
SIFEL (SIimple Finite Elements) system.Comment: 23 pages, 11 figure
Minimal Model for Sand Dunes
We propose a minimal model for aeolian sand dunes. It combines an analytical
description of the turbulent wind velocity field above the dune with a
continuum saltation model that allows for saturation transients in the sand
flux. The model provides a qualitative understanding of important features of
real dunes, such as their longitudinal shape and aspect ratio, the formation of
a slip face, the breaking of scale invariance, and the existence of a minimum
dune size.Comment: 4 pages, 4 figures, replaced with publishd versio
Magneto infra-red absorption in high electronic density GaAs quantum wells
Magneto infra-red absorption measurements have been performed in a highly
doped GaAs quantum well which has been lifted off and bonded to a silicon
substrate, in order to study the resonant polaron interaction. It is found that
the pinning of the cyclotron energy occurs at an energy close to that of the
transverse optical phonon of GaAs. This unexpected result is explained by a
model taking into account the full dielectric constant of the quantum well.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Let
Corridors of barchan dunes: stability and size selection
Barchans are crescentic dunes propagating on a solid ground. They form dune
fields in the shape of elongated corridors in which the size and spacing
between dunes are rather well selected. We show that even very realistic models
for solitary dunes do not reproduce these corridors. Instead, two instabilities
take place. First, barchans receive a sand flux at their back proportional to
their width while the sand escapes only from their horns. Large dunes
proportionally capture more than they loose sand, while the situation is
reversed for small ones: therefore, solitary dunes cannot remain in a steady
state. Second, the propagation speed of dunes decreases with the size of the
dune: this leads -- through the collision process -- to a coarsening of barchan
fields. We show that these phenomena are not specific to the model, but result
from general and robust mechanisms. The length scales needed for these
instabilities to develop are derived and discussed. They turn out to be much
smaller than the dune field length. As a conclusion, there should exist further
- yet unknown - mechanisms regulating and selecting the size of dunes.Comment: 13 pages, 13 figures. New version resubmitted to Phys. Rev. E.
Pictures of better quality available on reques
- …