52 research outputs found

    Exposure of neonatal rats to maternal cafeteria feeding during suckling alters hepatic gene expression and DNA methylation in the insulin signalling pathway

    Get PDF
    Nutrition in early life is a determinant of lifelong physiological and metabolic function. Diseases that are associated with ageing may, therefore, have their antecedents in maternal nutrition during pregnancy and lactation. Rat mothers were fed either a standard laboratory chow diet (C) or a cafeteria diet (O) based upon a varied panel of highly palatable human foods, during lactation. Their offspring were then weaned onto chow or cafeteria diet giving four groups of animals (CC, CO, OC, OO n=9-10). Livers were harvested 10 weeks post-weaning for assessment of gene and protein expression, and DNA methylation. Cafeteria feeding post-weaning impaired glucose tolerance and was associated with sex-specific altered mRNA expression of peroxisome proliferator activated receptor gamma (PPARg) and components of the insulin-signalling pathway (Irs2, Akt1 and IrB). Exposure to the cafeteria diet during the suckling period modified the later response to the dietary challenge. Post-weaning cafeteria feeding only down-regulated IrB when associated with cafeteria feeding during suckling (group OO, interaction of diet in weaning and lactation P=0.041). Responses to cafeteria diet during both phases of the experiment varied between males and females. Global DNA methylation was altered in the liver following cafeteria feeding in the post-weaning period, in males but not females. Methylation of the IrB promoter was increased in group OC, but not OO (P=0.036). The findings of this study add to a growing evidence base that suggests tissue function across the lifespan a product of cumulative modifications to the epigenome and transcriptome, which may be both tissue and sex-specific

    The E3 ubiquitin ligase TRIM25 regulates adipocyte differentiation via proteasomemediated degradation of PPAR gamma

    Get PDF
    Peroxisome proliferator-activated receptor gamma (PPAR??) is a ligand-dependent transcription factor that regulates adipocyte differentiation and glucose homeostasis. The transcriptional activity of PPAR?? is regulated not only by ligands but also by post-translational modifications (PTMs). In this study, we demonstrate that a novel E3 ligase of PPAR??, tripartite motif-containing 25 (TRIM25), directly induced the ubiquitination of PPAR??, leading to its proteasome-dependent degradation. During adipocyte differentiation, both TRIM25 mRNA and protein expression significantly decreased and negatively correlated with the expression of PPAR??. The stable expression of TRIM25 reduced PPAR?? protein levels and suppressed adipocyte differentiation in 3T3-L1 cells. In contrast, the specific knockdown of TRIM25 increased PPAR?? protein levels and stimulated adipocyte differentiation. Furthermore, TRIM25-knockout mouse embryonic fibroblasts (MEFs) exhibited an increased adipocyte differentiation capability compared with wild-type MEFs. Taken together, these data indicate that TRIM25 is a novel E3 ubiquitin ligase of PPAR?? and that TRIM25 is a novel target for PPAR??-associated metabolic diseases

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Effect of Larvae Treated with Mixed Biopesticide Bacillus thuringiensis - Abamectin on Sex Pheromone Communication System in Cotton Bollworm, Helicoverpa armigera

    Get PDF
    Third instar larvae of the cotton bollworm (Helicoverpa armigera) were reared with artificial diet containing a Bacillus thuringiensis - abamectin (BtA) biopesticide mixture that resulted in 20% mortality (LD(20)). The adult male survivors from larvae treated with BtA exhibited a higher percentage of “orientation” than control males but lower percentages of “approaching” and “landing” in wind tunnel bioassays. Adult female survivors from larvae treated with BtA produced higher sex pheromone titers and displayed a lower calling percentage than control females. The ratio of Z-11-hexadecenal (Z11–16:Ald) and Z-9-hexadecenal (Z9–16:Ald) in BtA-treated females changed and coefficients of variation (CV) of Z11–16:Ald and Z9–16:Ald were expanded compared to control females. The peak circadian calling time of BtA-treated females occurred later than that of control females. In mating choice experiment, both control males and BtA-treated males preferred to mate with control females and a portion of the Bt-A treated males did not mate whereas all control males did. Our Data support that treatment of larvae with BtA had an effect on the sex pheromone communication system in surviving H.armigera moths that may contribute to assortative mating

    Comparing the effects of nano-sized sugarcane fiber with cellulose and psyllium on hepatic cellular signaling in mice

    No full text
    Zhong Q Wang,1,2 Yongmei Yu,1,2 Xian H Zhang,1,2 Z Elizabeth Floyd,3 Anik Boudreau,2 Kun Lian,4 William T Cefalu1,21Nutrition and Diabetes Research Laboratory, 2Botanical Research Center, 3Ubiquitin Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA; 4The Center for Energy and Environmental Studies, Southern University, Baton Rouge, LA, USAAim: To compare the effects of dietary fibers on hepatic cellular signaling in mice.Methods: Mice were randomly divided into four groups (n = 9/group): high-fat diet (HFD) control, cellulose, psyllium, and sugarcane fiber (SCF) groups. All mice were fed a HFD with or without 10% dietary fiber (w/w) for 12 weeks. Body weight, food intake, fasting glucose, and fasting insulin levels were measured. At the end of the study, hepatic fibroblast growth factor (FGF) 21, AMP-activated protein kinase (AMPK) and insulin signaling protein content were determined.Results: Hepatic FGF21 content was significantly lowered, but βKlotho, fibroblast growth factor receptor 1, fibroblast growth factor receptor 3, and peroxisome proliferator-activated receptor alpha proteins were significantly increased in the SCF group compared with those in the HFD group (P < 0.01). SCF supplementation also significantly enhanced insulin and AMPK signaling, as well as decreased hepatic triglyceride and cholesterol in comparison with the HFD mice. The study has shown that dietary fiber, especially SCF, significantly attenuates lipid accumulation in the liver by enhancing hepatic FGF21, insulin, and AMPK signaling in mice fed a HFD.Conclusion: This study suggests that the modulation of gastrointestinal factors by dietary fibers may play a key role in both enhancing hepatic multiple cellular signaling and reducing lipid accumulation.Keywords: dietary fiber, FGF21, insulin signaling, AMPK, GLP-1, PI 3

    An Ethanolic Extract of Artemisia dracunculus L. Enhances the Metabolic Benefits of Exercise in Diet-induced Obese Mice

    Full text link
    PURPOSE: The purpose of this study was to determine the effect of an ethanolic extract of Artemisia dracunculus L. (5011) combined with exercise on in vivo glucose and fat metabolism in diet-induced obese male mice. METHODS: After 8 wk of high-fat diet (HFD) feeding, 52 mice were randomly allocated to a voluntary wheel running group (HFD Ex), a 5011 + HFD sedentary group (5011 Sed), a 5011 + HFD Ex (5011 Ex), or an HFD sedentary group (HFD Sed) for 4 wk. Real-time energy expenditure and substrate utilization were measured by indirect calorimetry. A stable isotope glucose tolerance test was performed before and after the 4-wk wheel running period to determine changes in endogenous glucose production and glucose disposal. We also performed an analysis of genes and proteins associated with the early response to exercise and exercise adaptations in skeletal muscle and liver. RESULTS: When compared with HFD Ex mice, 5011 Ex mice had increased fat oxidation during speed- and distance-matched wheel running bouts. Both HFD Ex and 5011 Ex mice had reduced endogenous glucose during the glucose tolerance test, whereas only the 5011 Sed and the 5011 Ex mice had improved glucose disposal after the 4-wk experimental period when compared with HFD Sed and HFD Ex mice. 5011 Ex mice had increased Pgc1-α and Tfam expression in skeletal muscle when compared with HFD Ex mice, whereas Pdk4 expression was reduced in the liver of HFD Ex and 5011 Ex mice. CONCLUSIONS: Our study demonstrates that 5011, an ethanolic extract of A. dracunculus L., with a history of medicinal use, enhances the metabolic benefits of exercise to improve in vivo fat and glucose metabolism

    The ubiquitin ligase Siah2 regulates obesity-induced adipose tissue inflammation

    No full text
    OBJECTIVE: Chronic, low-grade adipose tissue inflammation associated with adipocyte hypertrophy is an important link in the relationship between obesity and insulin resistance. Although ubiquitin ligases regulate inflammatory processes, the role of these enzymes in metabolically driven adipose tissue inflammation is relatively unexplored. Herein, the effect of the ubiquitin ligase Siah2 on obesity-related adipose tissue inflammation was examined. METHODS: Wild-type and Siah2KO mice were fed a low- or high-fat diet for 16 weeks. Indirect calorimetry, body composition, and glucose and insulin tolerance were assayed along with glucose and insulin levels. Gene and protein expression, immunohistochemistry, adipocyte size distribution, and lipolysis were also analyzed. RESULTS: Enlarged adipocytes in obese Siah2KO mice were not associated with obesity-induced insulin resistance. Proinflammatory gene expression, stress kinase signaling, fibrosis, and crown-like structures were reduced in the Siah2KO adipose tissue, and Siah2KO adipocytes were more responsive to insulin-dependent inhibition of lipolysis. Loss of Siah2 increased expression of PPARγ target genes involved in lipid metabolism and decreased expression of proinflammatory adipokines regulated by PPARγ. CONCLUSIONS: Siah2 links adipocyte hypertrophy with adipocyte dysfunction and recruitment of proinflammatory immune cells to adipose tissue. Selective regulation of PPARγ activity is a Siah2-mediated mechanism contributing to obesity-induced adipose tissue inflammation
    corecore