891 research outputs found

    Persistent currents in mesoscopic Fibonacci rings

    Get PDF
    In the framework of a tight-binding model, we study energy spectra and persistent currents in mesoscopic Fibonacci rings threaded by a magnetic flux. It is found that the flux-dependent electron eigenenergies E(Φ) in mesoscopic Fibonacci rings still form "bands" with respect to the flux Φ, but there is a scaling relation between the total "bandwidth" and the Fibonacci number. When the strength of the one-dimensional quasiperiodic potential increases, the persistent current decreases rapidly. Interestingly, for a generalized mixing model of mesoscopic Fibonacci rings, free-electron-like persistent current may appear if the number of electrons of the system takes a specific value.published_or_final_versio

    Quantum waveguide theory of serial stub structures

    Get PDF
    The electronic behaviors in quantum wires with serial stubs are studied. A general theory of quantum waveguide based on transfer matrix method is developed and is used to treat periodic stub structures, serial stub structures with a defect stub, and Fibonacci stub structures. A number of interesting physical properties in connection with electronic transmission, energy spectra, and charge density distributions in these structures, are found theoretically. In particular, we find that whether there are periodicity and symmetry in the transmission and energy spectra depends on the commensurability of the length parameters. If one length ratio is incommensurate, then the transmission and energy spectra do not exhibit periodicity and symmetry even for periodic stub structures. In particular, the quasiperiodic behaviors are shown in Fibonacci stub structures proposed by us whenever the length parameters are commensurate. The experimental relevance is also addressed briefly. © 1999 American Institute of Physics.published_or_final_versio

    Coupled optical interface modes in a Fibonacci dielectric superlattice

    Get PDF
    The coupled optical interface modes in a Fibonacci dielectric superlattice are studied. In the dielectric continuum approximation, the dispersion relation is found to have two bands of dual triadic Cantor structures, each being nonuniform scaling. For most of the eigenfrequencies, the amplitude profiles of electrostatic potential in this quasiperiodic structure are critical. Moreover, an invariant is analytically derived and is used to describe the general features of the frequency spectra and potential profiles.published_or_final_versio

    Breakpoint lead-lag analysis of the last deglacial climate change andatmospheric CO2 concentration on global and hemispheric scales

    Get PDF
    Antarctic ice core records show that climate change and atmospheric CO2 concentration (aCO2) are closely related over the past 800 thousand years. However, the interpretation of their sequential, and hence the causal relationship has long been controversial. In this study, we revisit this long-standing scientific issue based on 88 well-dated high-resolution climate proxy records derived from ice cores, marine deposits, and stalagmites. We composite global and hemispheric stacks of the last deglacial climate index (DCI) using a normalization scheme instead of a more conventional area-weighting and mixing scheme to enable a better detection of temporal variations. Rampfit and Breakfit techniques are employed to detect the trend transitions in each composited DCI series and in the recently constructed centennial-scale aCO2 over the period from 22 to 9 thousand years before present. We detect a clear lead of DCI change over aCO2 variation on both global and hemispheric scales at the early stage of the deglaciation, suggesting that the variation of aCO2 is an internal feedback in Earth&#39;s climate system rather than an initial trigger of the last deglacial warming. During the periods of the B&oslash;lling-Aller&oslash;d and the Younger Dryas, the climate system appeared to have been constrained by a fast coupling mechanism between climate change and aCO2 with no obvious asynchrony. The northern and southern hemispheric DCI stacks exhibit a seesawing pattern that can be linked to the influences of Atlantic meridional overturning circulation (AMOC) strength, revealing an important role of AMOC in regulating the global climate in the course of the last deglaciation.<br /

    Millennial atmospheric CO2 changes linked to ocean ventilation modes over past 150,000 years

    Get PDF
    Ice core measurements show diverse atmospheric CO2 variations—increasing, decreasing or remaining stable—during millennial-scale North Atlantic cold periods called stadials. The reasons for these contrasting trends remain elusive. Ventilation of carbon-rich deep oceans can profoundly affect atmospheric CO2, but its millennial-scale history is poorly constrained. Here we present a well-dated high-resolution deep Atlantic acidity record over the past 150,000 years, which reveals five hitherto undetected modes of stadial ocean ventilation with different consequences for deep-sea carbon storage and associated atmospheric CO2 changes. Our data provide observational evidence to show that strong and often volumetrically extensive Southern Ocean ventilation released substantial amounts of deep-sea carbon during stadials when atmospheric CO2 rose prominently. By contrast, other stadials were characterized by weak ventilation via both Southern Ocean and North Atlantic, which promoted respired carbon accumulation and thus curtailed or reversed deep-sea carbon losses, resulting in diminished rises or even declines in atmospheric CO2. Our findings demonstrate that millennial-scale changes in deep-sea carbon storage and atmospheric CO2 are modulated by multiple ocean ventilation modes through the interplay of the two polar regions, rather than by the Southern Ocean alone, which is critical for comprehensive understanding of past and future carbon cycle adjustments to climate change

    Spatial and seasonal distributions of carbonaceous aerosols over China 

    Get PDF
    Author name used in this publication: S. C. LeeAuthor name used in this publication: S. H. Qi2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Visualized exploratory spatiotemporal analysis of hand-foot-mouth disease in southern China

    No full text
    Objectives: In epidemiological research, major studies have focused on theoretical models; however, few methods of visual analysis have been used to display the patterns of disease distribution.Design: For this study, a method combining the space-time cube (STC) with space-time scan statistics (STSS) was used to analyze the pattern of incidence of hand-foot-mouth disease (HFMD) in Guangdong Province from May 2008 to March 2009. In this research, STC was used to display the spatiotemporal pattern of incidence of HFMD, and STSS were used to detect the local aggregations of the disease.Setting: The hand-foot-mouth disease data were obtained from Guangdong Province from May 2008 to March 2009, with a total of 68,130 cases.Results: The STC analysis revealed a differential pattern of HFMD incidence among different months and cities and also showed that the population density and average precipitation are correlated with the incidence of HFMD. The STSS analysis revealed that the most likely aggregation includes the Shenzhen, Foshan and Dongguan populations, which are the most developed regions in Guangdong Province.Conclusion: Both STC and STSS are efficient tools for the exploratory data analysis of disease transmission. STC clearly displays the spatiotemporal patterns of disease. Using the maximum likelihood ratio, the STSS model precisely locates the most likely aggregation
    corecore