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In the framework of a tight-binding model, we study energy spectra and persistent currents in mesoscopic
Fibonacci rings threaded by a magnetic flux. It is found that the flux-dependent electron eigenenergies
E(®P) in mesoscopic Fibonacci rings still form “bands” with respect to the filbx but there is a scaling
relation between the total “bandwidth” and the Fibonacci number. When the strength of the one-dimensional
guasiperiodic potential increases, the persistent current decreases rapidly. Interestingly, for a generalized mix-
ing model of mesoscopic Fibonacci rings, free-electron-like persistent current may appear if the number of
electrons of the system takes a specific vaj@£163-18207)08816-4

In recent years, there has been considerable interest in the In the tight-binding approximation, the Schiinger equa-
persistent currents in one-dimensional metal or semicondudion for an electron in a one-dimensional mesoscopic Fi-
tor mesoscopic rings threaded by a magnetic fitdn es-  bonacci ring reads
pecially interesting fact is that there is a discrepancy about
the magnitude of the persistent currents between theories and ta i to i+ 1=Eyy, (1)
experiments:* It is believed that disorder and interaction are
two important factors that affect the amplitude of the currentyyhere| is the site indext, the hopping integral, and, the
Nevertheless, their influences have not been completelyn_sjte energy. For simplicity and without loss of generality,
clarified. On the other hand, great experimental and theorethe spin freedom is not taken into account in the present
ical efforts have been devoted to physical properties in onepaper. There are two simple types of one-dimensional quasi-
dimensional quasiperiodic structures.As is well known,  periodic models. One is a transfer model, in whighis
the quasiperiodicity of Fibonacci structure has substantial efraken to be constant, bjtis chosen to be WO valugs and
fects on physical properties of condensed matter, and may, in 5 Fibonacci sequence. The other is an on-site model, in
provide a profound understanding of the intermediate regiogynich t; is constant, bub, is set to bev, andvg in the
between periodic and random structures. Furthermore, a rgjponacci sequence. In addition, there is a mixing model, in
tional approximation is often employed in theoretical treat-hich bothv, andt, take two values. For concreteness, we
ments of quasiperiodic behavior in Fibonacci chains or sUxgnsider the on-site model first, in which two parameters

perlattices. Fortunately, this rational condition can Dbe, anqgy, represent the quasiperiodic potential experienced
naturally realized in mesoscopic rings with the structure of y an electron in a mesoscopic Fibonacci ring.

Fibonacci chain. Such rings may be fabricated artificially. ~ gjncet, is a constant, we can take its absolute value as an
Therefore, it is worthwile to explore the properties of PerSiS-gnergy unit, or simply defing=—1. In the on-site model

tent currents in mesoscopic Fibonacci rings. In this paper, Wgq. (1) can be transformed into a matrix form as
first derive the basic formulas for persistent currents in me-

soscopic Fibonacci rings; then the numerical results as well
as relevant discussions are presented. i1 _ h
A Fibonacci chain is the simplest one-dimensional quasi- N R R
periodic structure, with two building units denoted Ayand
B. Using these two units, a Fibonacci chain is formed acyyhere
cording to the ruleS;,,=1{S;,S;_1}, Si=A, S,=AB. For
example,Ss=ABAABABA It is reasonable to considéx —(E—v) -1
andB as two kinds of site energies or hopping integrafs. T :( (E-v) ) 3)
. . L. . .. . 1+1) '
mesoscopic Fibonacci ring is constructed by a finite Fi- 1 0
bonacci chain withN sites. For convenience, we assume that
N=F;, wherej is a generation number, arfe; is a Fi-  When the ring is threaded by a magnetic flbxwhich leads
bonacci number obeying the recursion relatibp=F; , to the twisted boundary conditions for the wave functions of
+Fj_, with F;=F,=1. For a mesoscopic ring, it may be the electrons in the ring,the equation for the global transfer
reasonable to considﬁrj~103. matrix can be written as

)
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where ®y,=hc/e is the flux quantum, and M;

=H|N:1T|+1,1. Ti1+1,) andM; are all unimodular. All physical
guantities are periodic i with the period®,,.
Denoting x;=(1/2)TM;, the flux-dependent energy

spectra of an electron in the mesoscopic Fibonacci ring can

be obtained from the equation as

Xj=Cog27P/Dy). (5)
The persistent current contributed from thih level is
JEL(D 2mc sin27®/ P
ln(q)):_c n( ): ﬂ( 0) (6)

b D,

Here x; anddy; /JE can be evaluated recursively. The use-
ful recursion relations are

Xi=2Xj-1Xj-2" Xj-3 (7)
and
IX IXj-2  IXj-1 IXj-3
E AN TE T X2l T e ®
with the initial conditions
X1=—(E=va)2, xo=—(E-vg)2, x_1=1,
Ix1/0E=— %, dxoldE=—13%, dx_,/9E=0.
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FIG. 1. The energy eigenvalues of a mesoscopic Fibonacci ring for the
on-site model, wher¢g=10 (N=89), v=0.5, and®/d,=0.25. The inset
(8 shows the flux-dependent energy spectra fat/2<®/P,<1/2. The
inset(b) shows the five lowest-energy “bands.” All energies are in unit of
[ti]-

will occupy the levels one by one from the lowest level. If
the number of electrons of the systenNg, which is equal
to the highest occupied-level index, the energy of the sys-
tem is given by

E<<1>>=n§1 En(®), (11)

To calculate the charge stiffness later, we need also to evalu-

ate the second-order derivatives

-3

&°E ax; d\[ax;\?
| BT — 1A
A @IDg? T (&E "05(2“%)( aE)
. ® |\ Px;
+S|r12 Zﬂao)ﬁ . (9)
The corresponding recursion relation is found to be
52)(,'22 _ 52Xj—2+ﬁ2)(j—1 _ IXj-1 9Xj-2
gEZ ~ S\ NIm1TpEZ TTGET Xit2TSTE T TUE
072Xj—3

with the initial conditions

?x1/IE? =0, &*xol IE> =0, ¢*x_1/9dE2=0.

and the total persistent current of the system is

m

|<<b>=n§l In(®). (12)

Since the persistent current in a mesoscopic ring is com-
pletely determined by flux-dependent energy spectra of the
system, we address it at first. Figure 1 shows the numerical
results of the energy spectra for 10 andv =0.5. At a fixed
flux, for exampled® =0.25b, there areF,,=89 eigenener-
gies. It can be seen clearly that they form a Cantor set. Ac-
tually, all E,~® curves form three subband structures,
which have been shown in ins&) of Fig. 1. This charac-
teristics is quite similar to those for the electrons, phonons,
and spin waves in Fibonacci chain or superlattize$.As
pointed out by Bttiker and co-worker$,there is a corre-
spondence between an electron in a small normal one-
dimensional ring and an electron in a periodic potential, so

The first nonzero term of the second derivatives isflux-dependent electronic eigenenergies form “band” struc-

#?x,19E?=1. Equations(5)—(10) are our main analytical

tures with respect t@. In the mesoscopic Fibonacci rings,

results, which will be used in numerical calculations. Thesghis conclusion is still correct. To see ttg,(®) curves
equations are also suitable for the transfer model or even fatlearly, the five lowesE,(P) curves are plotted in ins¢b)

the mixing model, provided the initial conditions are modi-
fied.

In the following numerical calculations, we set
va=—vg=v. Obviously, the parameter represents the

of Fig. 1. EveryE,(®) curve changes smoothly with flux.
However, the quasiperiodicity affects the energy spectra of a
mesoscopic Fibonacci ring significantly. One example is
that the total “bandwidth” B [=X,|E,(®/Py=0)

strength of the quasiperiodicity. Once the Fibonacci genera= E,(®/®,=13)|] diminishes rapidly with increasing Fi-

tion number is chosen to bjg the total number of energy
levels isF; for any fixed flux. At zero temperature, electrons

bonacci generation numbgr There exists a scaling relation
betweenB andF;, i.e.,, B~F; “, as shown in Fig. 2. The
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2 suppression clearly, we pldtagainsty at a fixed® in the
inset of Fig. 3. Here the overall behavior bf®) is some-
1 what similar to that in a disordered mesoscopic rfnBut,
unlike disordered systems, the mesoscopic Fibonacci ring is
0 - deterministic and no average procedure needs to be taken. In
Fig. 4, we show the results for an otij case. One can find
m -1 that | ~® curves shiftd/®,=3 along the flux axis when
c compared with that for eveN, in Fig. 3, as in the periodic
- -2 systems? Also, we calculate the charge stiffness, which rep-
resents the response of the persistent current to the applied
-3 - flux, and is defined d$
] F, 0%E(®P) 13
-5 T T T T T T T 4772 (9((1)/(1)0)2' ( )

By combining Eqs(9) and(10) with Eq. (13), the numerical
InF. results ofD for ®/®,=0, 0.3,0.35, and 0.4 are plotted, as
J shown in the inset of Fig. 4. We can see thatydscreases,

FIG. 2. Log-log plot of the total “bandwidth”B and the Fibonacci the response of the persistent current to the applied flux is

numberF; . B is also in unit of|t,|. more and more difficult for®<0.35; while for 0.35

<®d/Py<0.5, the situation becomes a little bit complicated.
power indexa depends orv. For v=0.4, 0.8, and1.2, Whenv is significantly large|D| vanishes for allb. When
a=0.22, 0.49, and 0.75, respectively. Although the scalingg—0, D approaches 0.636, which can be analytically de-
index @ may be quite different, this scaling behavior is simi- rived from the energy spectra formulas of the tight-binding
lar to those in other quasiperiodic systefras the common periodic mesoscopic ring. Similar behaviors can also be
origin of the scaling comes from the quasiperiodicity of thefound for even-number electrons, but widh being shifted
structure. by ®,/2.

The persistent current in a mesoscopic ring is obtained The transfer model can be treated in a similar way. In
from the energy spectra in terms of E@6) and(12). Usu-  fact, the main results are almost the same. Here we wish to
ally, the narrower the “bandwidth” is, the smaller the maxi- address further an issue of higher transmission and extended
mum persistent current. Here let us consider a case with evestates in the mixing model. As in a generalized Fibonacci
number of electrons and near half-filled, wheje=12  chain® we need to take into account three reduced energy
(N=F;=233) andN.=116. Whenv =0, the relationship parameters: the on-site energythe hopping integrat, and
between the persistent current and the magnetic flux is freghe electron energf, wheret=t,,/tag With ty andt,g as
electron behavior. Ag increases)(®) is suppressed, as the hopping integrals between corresponding sitgg (s
shown in Fig. 3, where the maximum persistenttaken as the energy upitin this model, there may exist
current of the periodic tight-binding moddl,=(47c/  extended states, as in other quasiperiodic and disordered
N®y)sin(Ne7/N) is taken to be the current unit. To see the

n,

n,

T
: 050 -025 000 025 050
050 -025 000 025 050 /D

0

/P
0 FIG. 4. The persistent currehtvs flux ® for various on-site energies,
FIG. 3. The persistent currehtvs flux ® for various on-site energies, where j=12, andN.=117. The inset shows the variation of the charge
wherej =12 (N=233),N,=116. The inset gives the dependencé of the stiffness with the on-site energy at ®/®,=0, 0.30, 0.35, and 0.40, re-
on-site energy at ®/®,=0.25. spectively.
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FIG. 5. The persistent currehtas a function ofb in the mixing model,
wheret=2, v=0.6. (a) N,=85. (b) N.=86.
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In terms of Chebyshev polynomials of the second order, we
have

1 [sif(N+1)6]
17 sing | t~1sin(Ng)

—tsin(No) 5
—siM(N—-1)6])’ (16)
where co#=—(1/2)(E,—v). From Eq.(16), it is straight-
forward to show thaty;=cos(N6). Thus, from Eq.(5), we

are able to havé= (27/N)(n+®/dy). If E, is the highest
energy leveli.e.,n=m), Eq. (6) leads to

()]
m+30 s

2

N

4mc |
Im(q)): TSIH

which is just the result of a periodic tight-binding model.
Since thel(®) is the dominant term id (®),*® a free-
electron-like persistent current is naturally expected. There-
fore, if the electrons are appropriately accommodated in the
energy levels such thd&i,, satisfies Eq(14) approximately,

the persistent current is very close to the free-electron case
[see the numerical results calculated from E$.and (12)

in Fig. 5], and the transmission coefficients can be quite
large or even close to 1. For example, when2, v =0.6,

and E=—1 from Eqg. (14), the transmission coefficient
7=0.9968' For j=12, the energies of the 85th and 86th
energy bands are very close tol. The deviation of the

systems? which correspond to higher transmission coeffi- energy fromE,=—1 is less than 5% a® changes.

cients. If the three energy parameters satisfy a relétion

E,=v[(1+t?)/(1-1?)], (14)

In summary, we have investigated the persistent currents
in mesoscopic Fibonacci rings. The effects of quasiperiodic-
ity on the energy spectra as well as on the persistent currents

we can show that the global transfer matrix of the systenfiave been elucidated.

M;=RY, where

e -t YE,—v) -t (15
c t=1 0/
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