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The coupled optical interface modes in a Fibonacci dielectric superlattice are studied. In the dielectric
continuum approximation, the dispersion relation is found to have two bands ofdual triadic Cantor structures,
each being nonuniform scaling. For most of the eigenfrequencies, the amplitude profiles of electrostatic po-
tential in this quasiperiodic structure are critical. Moreover, an invariant is analytically derived and is used to
describe the general features of the frequency spectra and potential profiles.@S0163-1829~96!02742-7#

In recent years, there has been considerable interest in
elementary excitations in artificial multilayers or
superlattices.1–3 In particular, the optical phonon problem in
alkali halide or polar semiconductor superlattices is rather
attractive.2 Usually, the optical modes can be divided into
two types: one is a type of bulklike excitations, the other is a
type of interface mode. Interestingly, the interface modes
will be coupled to give the collective excitation of the whole
superlattice when the layer thickness of the system is rela-
tively small. On the other hand, since the discovery of a
quasicrystalline phase in Al-Mn alloys, great experimental
and theoretical efforts have been devoted to physical proper-
ties in one-dimensional quasiperiodic structures.4–7 As is
well known, the quasiperiodicity of Fibonacci structure has
substantial impact on the properties of elementary excita-
tions. Therefore, it is worthwile to explore the properties of
coupled optical interface modes in Fibonacci dielectric su-
perlattices. In this paper, we first derive the basic formulas
for transfer matrices, an invariant, and the dispersion rela-
tion. Then the numerical results as well as relevant discus-
sions are presented.

A Fibonacci superlattice is a simple one-dimensional qua-
siperiodic structure with two building blocks denoted byL
andS. For the structures considered here, each of them is
constructed by two layers with materialsA and B. The B
layers inL andS blocks have the same thicknessd, but the
A layers have thicknessdL in L blocks anddS in S blocks,
respectively. Using these two blocks, a Fibonacci dielectric
superlattice is formed according to the rule:Sj11
5$Sj ,Sj21%,S15L,S25LS. A andB are two kinds of di-
electric materials with different dielectric functions«A and
«B , which are the same as those in the corresponding infinite
media and may be frequency dependent.

In the electrostatic limit, the electrostatic potentialF sat-
isfies the Laplace equation¹2F(r ,t)50. If the z axis is
chosen to be perpendicular to the superlattice planes, without
loss of generality, we assume that only a plane-wave

exp(ikx) propagates along thex direction with k as the in-
plane wave vector. It is reasonable to writeF(r ,t)
5f(z)exp$i(kx2vt)%, and thus,

S d2dz2 2k2Df~z!50. ~1!

Denotingn as a layer index, the electrostatic continuum con-
ditions at the interface takes the form

fn~z!5fn11~z!, «n
dfn~z!

dz
5«n11

df~z!

dz
. ~2!

The solutions of Eq. ~1! can be written asf l(z)
5gle

kz1hle
2kz in the A layers, andf l(z)5ple

kz1qle
2kz

in theB layers, wherel denotes the block index. If we write

S gl11

hl11
D 5Tl11,l S glhl D ~3!

for A layers, it is straightforward to obtain

Tl11,l5S aek~dl111dl !/2, bek~dl112dl !/2

2be2k~dl112dl !/2, ge2k~dl111dl !/2D , ~4!

where

a5coshkd1
1

2 S «B
«A

1
«A
«B

D sinhkd,
b5

1

2 S «B
«A

2
«A
«B

D sinhkd, ~5!

g5coshkd2
1

2 S «B
«A

1
«A
«B

D sinhkd.
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One can find that there are three types of transfer matrices
TL,L , TS,L , TL,S , which are all unimodular. As usual, we set
M15TL,L andM25TL,STS,L , and have recursion relations
M j115M j21M j , from which all M j8s can be obtained,
where j is the Fibonacci generation number.

Defining x j5
1
2TrM j , one can find that the quantity

I5x j11
2 1x j

21x j21
2 22x j11x jx j2121 is invariant. For our

Fibonacci dielectric superlattice,

I5
1

4 S «B
«A

2
«A
«B

D 2sinh2kdsinh2k~dL2dS!. ~6!

This analytic formula is different from those for electrons
and acoustic phonons in Fibonacci chains.8 Comparing with
that for magnetostatic modes in Fibonacci multilayers,6 both
invariants appear to have the same wave-vector dependence,
but different frequency dependence. The invariant can be
used to characterize the structure of energy spectra as well as
the properties of the states of Fibonacci structures.8

In the calculation of the frequency spectra of Fibonacci
dielectric superlattice, we here use the free-boundary condi-
tion: the electrostatic potentials at the left and the
right boundaries, which contact with the enviroment of
dielectric function «C , are FL and FR with FL,R
5fL,Rexp$i(kx2vt)%. In detail, the constraint equations are
written as

~«A2«C!e2kdL/2g12~«A1«C!ekdL/2h150,

~«A2«C!ekdL/2gN112~«A1«C!e2kdL/2hN1150. ~7!

On the other hand, the global equation for the quasiperiodic
structure can be written as

S gN11

hN11
D 5M j S g1h1D 5Sm11 m12

m21 m22
D S g1h1D , ~8!

wherem11, m12, m21, andm22 are all complicated func-
tions of the wave-vector, thicknesses, and frequency. The
linear equations ofg1 , h1 , gN11 andhN11 in Eqs.~7! and
~8! have nontrivial solutions only if the coefficient determi-
nant vanishes. Thus the dispersion equation becomes

~«A
22«C

2 !e2kdLm111~«A2«C!2ekdLm122~«A1«C!2ekdLm21

2~«A
22«C

2 !m2250. ~9!

Equation~9! is the central result of this paper, from which all
relevant information regarding the optical interface modes in
the present quasiperiodic structure can be extracted. We will
see later on, in a specified case, this equation is of 2F j -th
order inv, which gives 2F j eigenfrequencies for each value
of k, whereF j is a Fibonacci number satisfying the relation
F j5F j211F j22 with F15F051.

Each of the eigenfrequencies can create a special distribu-
tion of potential. First, we consider the amplitudes inA lay-
ers. By using Eqs.~3! and ~4!, the potential amplitudes
gl11 ,hl11 of l11 block can be recursively obtained ifg1
andh1 are known.9 After gl andhl are determined, the po-
tential distributions in theB layers, characterized bypl and
ql , can also be obtained.

To get the concrete dispersion relation from Eq.~9!, we
choose«A as frequency independent, but«B(v)5«B,`(v

2

2vB,LO
2 )/(v22vB,TO

2 ), as for alkali halide or polar semicon-
ductor materials, wherevB,LO and vB,TO are the
longitudinal- and transverse-optical frequencies. We take
«A52.1, as the value of SiO2; «B,`52.34,«B,055.9,vB,TO
532.01 THz andvB,LO550.74 THz, which correspond to
the values of NaCl;«C51 ~the value of vacuum!.

Figure 1 shows the dispersion relation of coupled optical
interface modes for 12th order Fibonacci dielectric superlat-
tice, wheredL54d,dS52d, andd is fixed. The spectra are
devided into two branches, namelyv1 andv2 , which are
separated by a gap as in the periodic superlattices.1 For lower
kd, the spectra form two bands, while for higherkd, the
modes are highly degenerate. Between these two limits, be-
ing also different from periodic superlattices, there are many
gaps to appear. It can be seen more clearly from Fig. 2 that
the allowed frequencies form two branches of Cantor sets,
which are singular continuous. For thej th order Fibonacci
dielectric structure, the subbands ofv1 or v2 have
F j22 ,F j21 ,F j22 eigenfrequencies, respectively. One can

FIG. 1. Dispersion relation of the coupled optical interface
modes for 12th order Fibonacci superlattice. HeredL52dS54d.

FIG. 2. Eigenfrequency versus number of modes for a 12th or-
der Fibonacci superlattice withkdL52.0, kdS51.0, andkd50.5.
Two enlarged local regions are shown in the insets.
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also see that for thev1 band, the low-frequency subband is
wider than high-frequency subband, but for thev2 band, the
situation is reversed. This feature reflects the strength of qua-
siperiodicity, as can be illustrated by Eq.~6!: the lower re-
gion of thev2 band and the higher region of thev1 band
have larger values ofI , while the higher region ofv2 band
and the lower region of thev1 band have smaller values of
I .

The relative thicknesses ofd, dL , anddS have important
effects on the frequency spectra. One example is shown in
Fig. 3. Whenk, dS andd are fixed (kdS51.0,kd50.5), the
frequency spectra are all threefold branches asdL /dSÞ1.
Notice that, fordL /dS→1, two continuous bands are promi-
nant, which stems from the fact that the structure becomes
periodic ~at this timeI→0 as expected!. However, the qua-
siperiodicity is more prominant for small or large values of
dL /dS . Particularly for very largedL /dS , the spectra be-
come six highly degenerate branches, which seem to be dif-
ferent from the existing results in the literatures. For ex-
ample, whendL /dS@10.0, numerical calculations show that

there are only six limiting frequenciesv5 35.388 308 194 9,
36.862 657 159 6, 38.023 154 200 9, 47.175 283 229 3,
47.985 416 306 7, 48.936 159 968 8. These six limiting fre-
quencies are the isolated modes when the thicknessdL ap-
proaches infinity; they are actually the solutions of the fol-
lowing three equations:

«B
212«A«Bcothkd1«A

250,

~12e2kdS!«B
212«A«Bcothkd1~11e2kdS!«A

250,
~10!

~11e2kdS!«B
212«A«Bcothkd1~12e2kdS!«A

250.

Figure 4 shows another example, wherek, dL and dS are
fixed (kdL52.0 andkdS51.0). Ford/dS!1 , the eigenfre-
quencies approachvB,LO and vB,TO, while for d/dS@1,
there also exist six limiting frequenciesv5

FIG. 3. The variation of eigenfrequency distribution with the
thickness ratiodL /dS for kdS51.0 andkd50.5.

FIG. 4. The variation of eigenfrequency distribution with the
thickness ratiosd/dS for kdL52.0 andkdS51.0.

FIG. 5. The amplitude profiles of electrostatic potential for two
critical states:~a! v535.218 148 127 7;~b! v549.040 631 708 8.

FIG. 6. The amplitude profiles of electrostatic potential for two
quasilocalized states corresponding to the band-edge frequencies:
~a! v538.085 539 634 3;~b! v538.119 253 211 6.
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39.427 153 712 9, 41.716 274 108 1, 43.026 124 350 3,
43.430 412 732 0, 44.165 714 517 2, 46.114 221 825 4 cor-
responding to another kind of isolated modes, which satisfy
another set of equations

«B52«AtanhkdS , «B52«AcothkdS ,

«B52«AtanhkdL , «B52«AcothkdL , ~11!

«B52«A
«AtanhkdL1«C
«A1«CtanhkdL

, «B52«A
«AtanhkdL2«C
«A2«CtanhkdL

.

The quasiperiodicity of the frequency spectra must be re-
flected in the distribution of potential which is related to the
long-wavelength optical oscillations. If the averaged poten-
tial over each layer is considered, then

f l
A5~gl1hl !sinh~kdl !/~kdl /2! ~12!

for theA layers, and

f l
B5

1

kd H Fsinhkd1
«A
«B

~coshkd21!Gekdl /2gl
1Fsinhkd2

«A
«B

~coshkd21!Ge2kdl /2hl J , ~13!

for the B layers. For the parameters chosen in Fig. 2, we
have examined all potential profiles of 2F125466 eigenfre-

quencies and find that almost all states are critical. This fact
can be illustrated by the values of the invariant which range
from 0.465 068 026 2 to 4.355 134 986 3. Figures 5~a! and
5~b! show two critical states corresponding toN513, 454
modes in Fig. 2. The potential profiles in these two figures
obey power laws , which is quite similar to the cases of
tight-binding electrons, acoustic phonons or magnetostatic
spin waves; but it is interesting to note thatN5454 mode is
the 13th mode counted from the upper part of thev1 band.
The similarity of these two states denotes theduality of the
v2 andv1 bands, which is specific to the present system, in
contrast to the well-studied systems.3–6 Actually, almost all
the states for these two bands are one to one correspondent in
overall characteristics, although there may be some differ-
ences in detail.

Among the 466 states, still a few states are quasilocaliz-
ied. These states usually appear at the edges of the subbands
in Fig. 2. Figures 6~a! and 6~b! are two examples. Their
frequencies are corresponding to theN5178, 179 modes,
and both modes are at the two sides of a gap. These two
states are localized at the surfaces of the superlattices: one at
the left and the other at the right, and both are symmetric.
Here the duality of thev1 band andv2 band also exists.
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