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The electronic behaviors in quantum wires with serial stubs are studied. A general theory of
quantum waveguide based on transfer matrix method is developed and is used to treat periodic stub
structures, serial stub structures with a defect stub, and Fibonacci stub structures. A number of
interesting physical properties in connection with electronic transmission, energy spectra, and
charge density distributions in these structures, are found theoretically. In particular, we find that
whether there are periodicity and symmetry in the transmission and energy spectra depends on the
commensurability of the length parameters. If one length ratio is incommensurate, then the
transmission and energy spectra do not exhibit periodicity and symmetry even for periodic stub
structures. In particular, the quasiperiodic behaviors are shown in Fibonacci stub structures
proposed by us whenever the length parameters are commensurate. The experimental relevance is
also addressed briefly. @999 American Institute of Physids0021-897@9)05002-]

I. INTRODUCTION dimensional characteristi¢$We are concerned with the lat-
ter which belongs to mesoscopic physics In a mesos-
Electronic behaviors in one-dimensional periodic, disor-copic system, the essence is that an electron can transport
dered and quasiperiodic structures are important subjects igbherently across the whole system with negligible inelastic
condensed matter physit$.Historically, there have been scattering. As a result, a variety of interesting interference
many well-known models, such as the Kronig-Penneyphenomena can be exhibited, such as the quantized conduc-
model, describing an electron in a one-dimensional periodi¢gance in the point contacts, persistent currents in metallic
structure. In spite of the simplicity, these models displayloops, universal conductance fluctuations, etc., which pro-
many main features of periodic structures, especially bandgide potential applications to the fabrication of new quantum
and gaps, so they have been introduced in the course of solidterference devices.
state physics. All electrons occupy the extended states in  With recent significant advancement in the fabrication
one-dimensional periodic structuréSince there exists dis- technology of ultrasmall structuré$the molecular beam ep-
order, for example, impurities or defects, in otherwise peri-itaxy together with electron-beam lithography can provide us
odic structures, localized modes may appear. Particularlywith many mesoscopic metal or semiconductor structures.
the Scaling theory of localization indicates that any disorden:urthermore' the Scanning tunne“ng microscope has made it
will give rise to localized modes in one-dimensional possible to fabricate atomic-scale structures. Using these
system$. It has been found theoretically that the one-techniques, one can make extremely high mobility quantum
dimensional quasiperiodicity of Fibonacci structures has subpjires with narrow widths, in which only a few of the lowest
stantial effects on energy spectra and eigenstates which asgpbands are occupied and the transport is approximately
intermediate between periodic and disordered structures. Thgyjlistic. The allowed modes in the guantum wires are then
energy spectra are singular continuous and the eigenstatggnsidered to be the waveguide modes. Since electronic
are critical® transport in quantum wires with various geometric structures
In recent years, there has been significant progress i not only a basic physical problem but also relevant to
one-dimensional physics, which has been not only a heuristigsefu| electronic devices, it has attracted considerable atten-
tool but also a real physical entity. On one hand, many polyyion, in particular, the quantum waveguide theory has been
mer materials with long molecular chains can be regarded agseq extensivel®~1” For example, Solst al. studied semi-
one- or quasi-one dimensiorfalon the other hand, many conductor stub structures that may exhibit transistor
artificial structures, for example, quantum wires, have oneynction3 The theoretical calculation showed that relatively
small changes in the stub length can induce significant varia-
3Electronic mail: zwang@hkucc.hku.hk tion in the electron transmission across the structure. There
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boundary conditions below, which ensure the continuity of
wave functions and the conservation of current density.

The electronic wave functions in theth segment and
nth stub are plane wave-likeir,(z)=A, expikz)+B,
X exp(—ikz) and ¢,(z) = C, exp(kz)+D, exp(—ikz), respec-
n+1 tively. Hereafter, a local coordinate is chosen for each seg-
ment or stub, with its origin being located at the left-hand
n side of the segment or downside of the stub. In Fig. 1, if the
upper end of each stub which can be controlled by external
gate voltage is rigid, by applying the matching conditions of
wave functions and their derivatives at the intersections, the
electronic amplitudes in then(+1)th segment can be ob-
tained from thenth segment as

FIG. 1. A schematic serial stub structure. The lengths ofritiesegment
. An+1 An
andnth stub ard , andL,,, respectively. =T
Br‘l+l n+1n Bn ]

In In+1 IN

()

. . whereT is a 2x 2 transfer matrix which can be written
have also been some experiments to successfully verify th ntin

waveguide characteristics of electron transport through a
wide-narrow-wide  structure by the  splitting-gate
techniquet®®In fact, more strikingly, many theoretical pre-
dictions in mesoscopic physics have now béanwill be in Th+1n= i
the near futureverified by experiments. = cot(kL,) 1+ = cot(kL,)

In this article, we systematically study electronic trans- 2 2
port in quantum wires with serial stubs, in which disorder dkln 0
and interactions are assumed to be negligible. In Sec. I, X ikl ) 2
using the transfer matrix method, we develop a general 0 e
theory of quantum waveguide with serial stub structures. Th&ince all the lengths, andL, are combined with the wave
theory is used to treat the periodic stub structures in Sec. llivectork, we can takd, andL, as well ask to be dimen-

the serial stub structures with a defect stub in Sec. IV, andionless quantities in the following. By a transformation
Fibonacci stub structures in Sec. V. In Sec. VI, a brief sum-

i i
1- > cot(kL,,) — > cot(kL,,)

mary and remarks are presented. An) _ 1 ®n
n 1 | Bn
Il. GENERAL THEORY Ths1n is transformed intaM,, 1, for a new set of ampli-
Recently, electronic transport of quantum waveguideides @n,Bn), which satisfies the expression as

structures has been addressed considefdbly.Xia pro- a a

. . . . n+1 n
posed a simple one-dimensional waveguide theory for quan- (ﬁnJrl) = Mn+1,n(’3n : (4)
tum wires with one or two stub$.Deo and Jayannavar ex-
tended it to multiple serial stub structur€sin this article, —Where
we cons_ider a qu_antum wire a_ttached with a series of st_ubs 1 0\ /cogkl,) —sin(kl,)
perpendicular to it as shown in Fig. 1. We label the wire ~ M,.;,= kL 1/ sinkd Kl
segments with stubs one by one with positive integeirom —cotkLy) sin(kln) ~ cogkly) )

left to right. In general, the lengths of the segments and stubs
may vary along the wire. When the lateral cross section ofA specific merit of Eq(5) is its form of real functions, which
the wire is sufficiently small and at sufficiently low tempera- will give tremendous convenience for further analytic treat-
tures, electrons can only occupy a few lowest transversgient. All of the transfer matricell,, ; ,se SL(2,R), the set
quantum states, and there are strong confinements in the tvia all real 2<2 matrices with determinant one. If the lengths
transverse directions, then only electronic motion in the lonof all segments and stubs and the initial values of the ampli-
gitudinal direction is of interest. The system considered igudes (;,3;) are known, then all the amplitudes along the
quasi-one-dimensional and retains quantum interference. It igire can be obtained recursively from

assumed that no other scattering potentials are present except
for the geometrical effect of the intersections of the stubs ( n+l “1
with the main wire, and only back scattering is the relevant Bn+1 P
scattering mechanism. So in any segment or stub, an electravhereM (n) =II{_ ;M. ;. In fact, when we treat electronic

is free particle-like. An electron with energy=%2k?/2m (k  transport of the serial stub structure, the incident electron of
is the wave vector but can also be used to represent thiae system is described by ek, and the reflection ampli-
energy itself injected from one side could pass through thetude isR which can be obtained from the global transfer
structure ballistically, provided that the continuum condi- matrix, thena;=(1+R)/2, andB;=(1—R)/2i. The system
tions are satisfied. Also for simplicity, we use the Griffith becomes deterministic.

: (6)

>=M(n)
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For the wire withN serial stubs, after all of the transfer where|M(N)|?=X, ,IM,, ,(N)|*(x,»=1,2) is the sum of
matricesM (n)s are obtained, many important physical quan-the squares of the four matrix elements. By using the peri-
tities can be readily derived. As the global transfer matrixodic boundary condition of the finite serial stub structure, the

M(N):HiN:lMi+1,i , the reflection amplitude is energy spectra can also be obtained from
1
R=— S g2 M EN) = MEN) + ME(N) 2 TM N <1 ©
On the other hand, charge density distribution in tith
—MZ%(N)]=2i[M13(N)M 1(N) segment is determined by
2)12=|A. dkz4 B e ikz|2
FM(NIMoAN)T}, (0 @ =IAC B
— 2 2 2 2
and the transmission coefficient is =2[|an|*+[Bnl*+ (|| *— | Bn| ) cOg 2k 2)
4 _(anB: + a:ﬂn)Sin(ZKZ)]v (10
TN_2+|M(N)|2’ ®  where

1
el =1 Bl = 5 g M) = ME(W TTM AN + M2(N)]
+IM I =MEAMIIMEN) + M5(N)]=[M12(n)M15(n)
= May(N)M2x(n)J[M12(N)M 15(N) + M2 (N)Mo(N) I} (13)
and
2
B} + o Bo= g (MM WIMEAN) + M2(N)]

+M(NMoM[MZ(N)+ M3 (N)]=[M15(n)My(n)
+M13(N)Moy(N)J[M13(N)M 15(N) + Mo (N)Moy(N) ]} (12

Equationg5) and(8)—(12) are some general results of quan- M(n)=M"
tum waveguide theory for serial stub structures, which will

be used to treat periodic stub structures, serial stub structures _ M1 %100 = #n—2(X)  Myatn—1(X)

with a defect stub, and Fibonacci stub structures in the next M217/n-1(X) Mo 70— 1(X) = % —2(X) |

three sections. (14)
where

Ill. PERIODIC STUB STRUCTURES x= 3 (Myy+myy) =cogkl)+ 3 sin(kl)cot(kL) (15

and 7,(x) is a Chebyshev polynomial of the second

We would like to point out first that it is possible for us ;- 0021 satisfying the second order differential equation as
to consider some more complicated periodic stub structures

with more than one segment and stub in each cell, but we  (1—x2)7/(x) —3xZ,(X)+n(n+2)%(x)=0.  (16)
here would rather discuss the simplest case in which there
only one type of building block, i.el,=I andL,=L for any

n in Fig. 1. This is a very simple case where only one basi
transfer matrixM,, ; ,=M exists, and

Lf‘he prime represents the derivative operator. For conve-
ience, we consider the solutions of E46) to be in real
orm. Then for|x|<1, we can takex=cos#6, and 7/,(X)
=sin(n+1)#)/sin #; but for |x|=1, we define|x|=coshé,
and 7,(x)=sin{(n+1)d)/sinh @ for x>1, and (1)"?!

B ( My m12> sin{(n+1)6]/sinh 6 for x<— 1. There is a recursion relation
My My, (X)) =2XPn—1(X) — %n—2(X) a7
_ [ cogkl) —sin(kl) for any x.
| sin(kl) — cogkl)cot(kL) cogkl)+sin(kl)cot(kL)/" Taken=N in Eg. (14) and after some calculations, we
can show
(13
IM(N)|?=24+F2(N,k,I,L), (18)
As forn=1,... N, it is easy to show that where
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F(N,k,I,L)y=cot(kL)%/y_1(X) (19
and the transmission coefficient is

4

TN:4+F2(N,k,I,L)' (20

This is a precise analytic expression which can be used o~ *°T
examine all results of periodic stub structures in Ref. 17. It is
noted that Eq(20) has a similar form for an electron passing
through finite Dirac comb& However, our approach is U
simple and independent. As shown by numerical calculations oL L

in Ref. 17, the transmission spectra have periodicity and - - ! - L - L
symmetry for wave vectork in some special length param-

eters. From Egs(19) and (20), we can discuss these prob- R
lems more clearly and easily. In addition, we can also see b)
from Egs.(19) and (20) that there may exist some resonant -

transmission pointsT=1) when eigenvaluek satisfying /

F(N,k,I,L)=cotkL)Zn-1(x) =0 (on the other hand, arly T /

satisfying F(N,k,I,L)— = leads to a zero transmissijon |
Resonant transmission can be obtained by requiring
cogkL)=0 (21) 2t /

or L
siAN@)=0, but sing+0. (22) ol /

The solutions of Eq(21) are simply given by ' 2 s s
kL=(2m+1)m/2, (23

wherem is any non-negative integer. The solutions of Eq_FIG. 2. The first two periods of the transmission spectrum and dispersion
curve for a periodic stub structure with parameters1, |=1/2 andN
(22) lead to P P

=6. (a) Transmission coefficient vs the incident wave vectds; (b) the
wave vector of syster® vs k.

Q/n

cos(kl)+;sin(kl)cot(kL)=cos(%7r), (24)

wherey may take 1,.N—1N+1,..., N—-1. to satisfy Eq.(22). For odd N, the resonant transmission
These resonant transmission points can be considered pwints ofk take 2N— 2 values, while for eveiN, plus addi-
be characteristics of periodicity and symmetry of transmistional k= 7/2 and 3r/2 satisfying Eq.(21) [but not satisfy-
sion spectra. It will be clear at once that the periodicity andng Eq.(22)], there are & resonant transmission points. Fig-
symmetry of the transmission spectra are closely related tare 2a) presents the numerical results of the first two periods
the relative ratio of andL. For convenience, in this section, for N=6. In Fig. 2a), there are 12 resonant transmission
we always takeL=1. We note that there are two distinct points in the first period and the second period, respectively.
cases: the commensurate case whes a rational number Our method for discussing the periodicity and symmetry as
and the incommensurate case whes an irrational number. well as for the calculation of the resonant transmission points
For the commensurate case, the periodicity and the symmean be readily used in other commensurate cases. Actually,
try always exist, which can be seen from the following twoin more general commensurate cadesg/p, p andq are
typical examples(l) WhenL=1=1, Eq.(24) is written as  integers which are relatively prime. Equati¢tb) is thenx
(3/2)cosk=cos(yn/N). BecauseTy is an even function ok =cos@k/p)+(1/2)singk/p)cotk. It can be seen that whdn
in this example, the period of the transmission spectra is—»pw+k, then x—(—1)%, the transmission coefficients
Ak= 7 and the first period i& e (0,7], with its symmetric are identical for both wave vectors, so the periodkois
center located ak= /2. For oddN, since there aré&l—1 Ak=pm.
eigenvalues ofk satisfying Eq.(22) (corresponding toy To the best of our knowledge, the incommensurate case
=1,...N—1), plusk==/2 for Eq.(21), there are totallyN has not been discussed in literature so far, but it is of interest.
resonant transmission points; for evhin there are alsiN In this case] is an irrational number. Then we cannot find
—1 eigenvalues ok satisfying Eq.(22), but y=N/2 gives any periodicity and symmetry for the transmission spectra as
k= m/2 overlapping with one of the solutions of EQ1), so  k varies, or to say, the period is infinite. This incommensu-
there are totallyN—1 resonant transmission point§2) rability for transmission spectra can be analyzed from Egs.
When L=1, 1=1/2, then [6cog(ki2)—1]/4 cosk/2) (15), (19) and(20), and one example is shown in FigaB
=cos(yn/N). The period ofk for transmission spectrum is for which we takel/L=(y5—1)/2, the reciprocal of the
21, and the symmetric center of first period is ket 7.  well-known golden mean. Certainly, the resonant transmis-
There are R —2 values fory=1,...N=1N+1,....N—1  sion points can still be determined from E@21) and(22).
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1.0 (a)
3 -
|._ 05 |-
o 2
=
sol U L
1 N 1 N 1 . 1 N 1 1F
0 1 2 3 4
(b) or
3r 1 1 1 !
0 1 2 3 4
4 z
g 2f /
C\7 FIG. 4. The charge density distributions in a periodic stub structure for two
/ symmetric wave vectork=0.3147 and 1.686r in the first period of trans-
L mission spectrum with equal transmission coeffici€st0.1025619. The
parameters are the same as those in Fig. 2.

: . ! . ! . . - - use the extended zone scheme @orEnergy bands to high
transmission region and energy gaps to transmission valleys
k/m are one to one correspondent.
FIG. 3. A part of the transmission spectrum and dispersion curve for a  1here are close relations between transmission coeffi-
periodic stub structure with parametérs-1, | = (52— 1)/2, andN=4. (a) cients and charge density distributions of the system through
Transmission coefficienT vs the incident wave vectdk; (b) the wave  transfer matrices. But it can be understood from Ea8)—
vector of systenQ vs k. (12) that charge density distributions include more informa-
tion than transmission coefficients. For a commensurate case
L=1, I=1/2 andN=6, from the first two periods of the

Note that some of resonant transmission points determine@@nsmission and energy spectra shown in Fig. 2, we see that
from Eq.(23) are just as in the commensurate case, but oththe period isAk=27 and the symmetric point dk is 27
ers determined from Eq24) have no periodicity and sym- —K. By using Eq.(13), it is found that wherk—2w*k a
metry. Nevertheless, we find from numerical calculationscouple of diagonal/off-diagonal matrix elements in Etf)
that there is a rule for the total number of resonant transmischange their signs simultaneousty not, thus Egs(11) and
sion points in the incommensurate cae=(\5—1)/2. For (12), which determine the envelopes of E40), remain in-
ke (0,2m], or (2m4m],..., the total number for resonant Variant. However, cos{2) and sin(&2) in Eq. (10) have no

transmission points is invariant in each region omteis  Periodicity and symmetry fok— 27 = k. Figure 4 shows the
determined. ForN=3, when N=odd number, it is 3  charge density distributions of two symmetkivalues at the

—1), but whenN=even number, it is - 2). transmission band edges of the first period in Fi@) #vith _
Strictly speaking, there are no rigorous transmission for{ransmission coefficient =0.1025619. The charge density
bidden regions for finite serial stub structures. But as thdlistribution decreases monotonically for=0.3147, but de-
number of stubs>4, the high transmission regions are sepa-Créases oscillatorily fork=1.686r. Both are localized
rated by the transmission valleys, which resemble forbiddefnodes exhibiting the characteristics of the edge states.
regions. So transmission spectra can be compared with the Figure 5 shows the charge density distributions for an-

energy band structures. Under the periodic approximatiorPther commensurate examples=1=1 andN=11, in which
by using Egs(9) and (14), we have two wave vectork chosen are located in the transmission

interbands with resonant transmission coeffici€atl. We
can see that they have the same envelopes Kor
=0.3104799r and its periodic poink=1.3104796%r.

For an incommensurate cade=1 andl=(y/5-1)/2,
whereQ is the wave vector of the system with a large “unit although the transmission and energy spectrum show incom-
cell” of N segment$® Combined with Eq.(15), one can mensurate behavior as shown in Fig. 3, the charge density
calculate the energy spectra of the periodic stub structureslistributions do not exhibit such feature. In Fig. 6, we plot
The dispersion relations for commensurate and incommensthe results of a resonant transmission case With100 and
rate cases are shown in Figgbpand 3b). For clearness, we k=0.8199988r, which clearly show a periodic distribution

XN -1(X) = 7/n-2(X) =CcO4 QNI), (29
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FIG. 6. The charge density distributions in a periodic stub structure for a
resonant transmission wave vector 0.8199988r. The parameters are
1F =1,1=(5Y2-1)/2, andN=100.
ol—t : " : . s L spectra as shown in their Figs. 4 and 5. However, one of their
conclusions that bound states disappear as the number of
z stubs increases is misleading. Actually, when we only im-

e . prove the numerical calculation precision, we find that the
FIG. 5. The charge density distributions in a periodic stub structure for two ) . ) o
periodic wave vectors in the first two periods with same resonant transmisboqnd _States still exist with the Same parar_ne_ters as the_ws In
sion coefficientT=1. The parameters are=I=1, and N=11. (8 k their Fig. 5, and the corresponding transmission coefficients
=0.3104799r; (b) k=1.3104799r. are close to one. Notice that, in our treatment to be detailed
below, unlike Ref. 17, we need not calculate the total transfer
] ) ) ) matrix from the numerical product of the individual transfer
of the charge density. We wish to point out that in both \\54ices and thus the numerical error will not be accumu-
commensurate and incommensurate cases for resonant trafige leading to much smaller error, which appears to be
mission points corresponding ko= 7/2,3w/2, ..., thecharge 1\ ,cial in some sensitive cases
density distributions are homogeneous, because an electron |, 5 periodic semiconductor superlattice with a central
moves along the quantum wire as if there are no stubs, whichyisicial defect well, there is direct evidence of positive

can be directly seen from EL3). bound state, which is a spatially localized state formed by
Bragg reflectiort* Based on the similar physical origin, a

Q/T'UnglAL STUB STRUCTURES WITH A DEFECT defect stub in an otherwise periodic stub structure may in-
duce spatially localized states by multiple reflections. We

As discussed by Deo and JayannaVaif,there is a de-  refer to the relevant wave vectors, i.e., energies, as isolated
fect stub in an otherwise periodic stub structure, there maynodes. If the length of the defect stuklig, then the transfer
appear some positive energy bound states in the transmissiomatrix corresponding to the defect stub reads

cogkl) —sin(kl)
Mg=| . . . (26)
sin(kl) —cogkl)cot(kLy) cogkl)+sin(kl)cot(kLy)
|
For simplicity, we consider that the defect stub is located at M (2S+1)=MSM4MS. (27)
the center of an otherwise periodic stub structure v@th
stubs arranged at each side of the defect stub and the totgher some tedious derivations. we obtain
number of stubs beinj=2S+ 1. The global transfer matrix '
is then IM(2S+1)|?2=2+F3(2S+1k,l,L,Ly), (29
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F(2S+1k,l,L,Ly)=0 with |x|>1. From this criterion, we

10 - can judge that there are six isolated modes in Fig. 7. They
arek=0.7390465r, 1.143793%, 1.7777596r, 2.2222404,
2.8562061r, and 3.2609535b. These six isolated modes are
symmetric abouk=27. Among them, the second and the
fifth are two isolated modes already obtained in Ref. 17.
Four other isolated modes are located at the edges of the
original transmission bands, but they are really isolated
modes as will be verified from the charge density distribu-
tions. WhenS increases, the positions of isolated modes will
move a little. As S—o, the condition of F(2S
+1k,l,L,Ly) being finite leads to

L cof(kLy)—2 cotkL)cot(kLy) — 4 cotkl)cot(kL)+4=0.

00 —J N IV N L (31

o 1 2 s 4 As L=1=1, L4=0.75, six solutions of Eq(31) are very
k/n close to the solutions foB=4. They arek=0.7434217%r,

1.1438645r, 1.7781556r, 2.2218444r, 2.856135%, and

FIG. 7. The first period of the transmission spectrum for a serial stub strucg 2565783

ﬁfzvsvﬁhligefem stub. The parameters brel =1, L=3/4, S=4, and As discussed before, in the periodic stub structures there
are correspondences between the transmission spectra and
the energy spectra. This is still true for the serial stub struc-
tures with a defect stub. From Eg®) and (27), we have

where instead of Eq(25)

F(2S+1k,1,L,Lg)=cot kL) Z&(x)— %5_1(X)]

X' %o8(X) = %55 -1(X) =04 Q(2S+ 1)1 ], (32
—[cot(kL)— cot(KLg) ][ 2 3(x)
where
—2 cogkl) Z24(X) 75— 1(X)
] r— 1 g
+ 7% (0] (29) x"=cot(kL)+ 3 sin(kl)cot(kLy). (33
andx is still expressed in Eq15). The transmission coeffi- Numerical calculation confirms that there are very narrow
cient is bands related to isolated modes in the transmission spectra,
4 and they become narrower and narroweBascreases. This
T25+1:4+ F225+1KILLy" (30)  is consistent with the calculation on the density of states in

Ref. 17.

As pointed out by Solst al,, a small change in the stub The charge density distributions of serial stub structures
length may induce dramatic changes in the transmission for with a defect stub can also be obtained by using Eb®—
wide range of energ%/g. This is a remarkable result which (12) with matrix elements given by Eq&l3), (14), (26) and
may lead to useful device applications. Taking =1, L4 (27). Figure 8 shows the charge density distributions of two
=0.75, andS=4, from Egs.(15), (29), and (30), we can isolated mode&=0.7411876r and 3.258812# for S=5. It
determine that the period of transmission spectrumkfdas  is noted that these two eigen-wave vectors are located be-
47 and the symmetric center of the first period iskat tween those folS=4 andS=<. The charge density distri-
=21r. The transmission spectrum of the first period is showrbutions for these two symmetric modes separated from the
in Fig. 7. We can see that a few resonant transmission peaksiginal transmission bands have the same envelope, but
exist and some of them are thinner. How can one select thihere are more oscillations for larger It is seen from Fig. 8
isolated modes? This question appears to be important, but fkat for these two isolated modes, as well as for four other
yet to be answered. Deo and Jayann&véound only two  isolated modes, charge density distributions exhibit the fea-
isolated modes in the forbidden regions for the periodic stultiure of localized statesbound statds The maximums of
structures ifS is not too large. But it may not be reliable to their envelopes are all at the center of the system. It can be
depend on the limited numerical results mainly because oéxpected that for largeB, the localization will be clearer,
the restriction on the calculation precision of their method.which has been confirmed in our numerical calculations up
We think it is constructive to address the problem as followsto S=50. After S=10, the charge density distribution of
In the absence of any defect stub, ile;=L in Eq.(29), the  each isolated mode concentrates around the center of the
high transmission regions forming bands correspontikfo structure with a very sharp peak. It can be roughly under-
<1; but whenL4#L, there may exist narrow transmission stood that the origin of the localized states is the condition
bands satisfyingx|> 1. Furthermore, in each of the narrow for isolated modes,|x|>1, which leads to 74, 1(X)
transmission bands, there may exist a resonant transmissiensinhd)/sinh @ or (—1)"~! sinhg)/sinh 6. For largern,
point, so we define the isolated modes as the solutions of/,_;~expn#6). The factor expid) will enter into the Egs.
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FIG. 8. The charge density distributions in a serial stub structure with aFIG. 9. The charge density distributions in a serial stub structure with a
defect stub for two symmetric resonant transmission wave vectors in the firsdefect stub for two wave vectors the same as those in Fig. 5. The parameters
period of the transmission spectrum. The parameterslaré=1, Lq4 are the same as those in Fig.(8 k=0.3104799, T=0.9668976;(b) k

=3/4, S=5, andN=2S+1=11. (a) k=0.7411876r; (b) k=3.2588124. =1.3104799%, T=0.0148286.

(10—(12), so the charge density distribution in théh seg- 9 8204753, and 0.9080155 for case(2). The numerical
ment is related to the exponential factor ex)( results of the charge density distributions for these isolated
As has been seen that in the presence of a defect stub thegges show that they are all localized states with maximum
transmission and energy spectra of an otherwise periodig; the center of the structures.
stub structure change dramatically, especially when isolated \ye can also distinguish the commensurate and incom-
modes corresponding to localized states appear. On the othgfensurate behaviors in transmission spectra for serial stub
hand, it is reasonable to believe that other states corresponggctures with a defect stub. But now there are three param-
ing to the eigenvaluek satisfying|x|<1 will also change a etersL, I, andLg, so bothl/L andL4/L need to be consid-
lot. Figure 9 shows the charge density distributions in thesred. The situation will be more complicated. We have
serial stub structure with a defect stub for the same kwo .pecked a simple examplé,=1=1, Ly=(\5—1)/2. The
values as in Fig. 5 for the periodic stub structure. The charggansmission and energy spectra show no periodicity and
density distribution in Fig. @) is somewhat similar to Fig. symmetry at all, just like Fig. 3, but with different shapes.
5(a), but no symmetry about the center exists. The differenceere are also some resonant transmission isolated modes.

between Fig. tb) and Fig. b) becomes even significant. Thejr charge density distributions reflect the characteristics
Transmission coefficient§=0.9668976 for Fig. @ andT of localized states as well.

=0.0148286 for Fig. ).

Using the theoretical method introduced in this section,
we can treat other serial stub structures with a defect stub, fqr
examples(1) L=I—1, Ly—2, S—4: and(2) L=I—1, L, Q7. FIBONACCI STUB STRUCTURES
=10, S=50. From Egs(15), (29) and (30), the periods of A Fibonacci stub structure is composed of two building
the transmission spectra for both examples Ake=7, so  units denoted by A and B. As shown in Fig. 1, unit(B) is
we only need to consider the first perit@ =) which has the a wire segment of length,(lg) with a perpendicular stub of
symmetry center atk=w/2. The solutions of F(2S  lengthL(Lg) which can be varied by the external gate volt-
+1k,l,L,Ly)=0 with [x|>1 give out two isolated modes age. Using these two units, the Fibonacci stub structure is
k=0.2523298r and 0.7476702 for case(1); six isolated formed according to the rul§;,,=1{S;,S;_1}, with S;=A
modes k=0.0919845%r, 0.179524%, 0.25r, 0.75m, and S,=AB. For exampleS;=ABAABABA For simplic-
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ity, we take the total segment numbeér=F;, wherej is the  the two building units, there are two basic transfer matrices
Fibonacci order ané; is the Fibonacci number which satis- M, ;,=M, or Mg. From Eq.(5), the amplitude transfor-
fies Fj 1=F;+F;_1, with F;=F,=1. Corresponding to mation of electron through unA can be written as

B cogkly) —sin(kl,)

Ma= sin(kl,) —cogklp)cot(kL,) cogkly)+sin(kla)cot(kLy) )’ (34)

while for unitB, it is only needed to substitu#®—B inthe  All permitted k values are in the range 1<cosQFl)<1.
matrix expression oM, to getMyg. Figure 11 shows the energy spectrum with the same param-

One can find a matrix map for Fibonacci structure aseters of Fig. 10. The bands correspond to the transmission
M; 1=M;_1M;, with My=Mg andM =My .S For a finite  region, while the gaps forbidden region. The ing@tof Fig.
Fibonacci stub structure witN=F;, the total transfer ma- 11 is the enlargement of the central part which shows the
trix of the system can be obtained by the recursion relationself-similarity of the energy spectra, while the ingbj of
The transmission coefficient of thd-unit system can be Fig. 11 gives the log-log plot of the total energy widi¥ of
calculated from Eq(8), and the energy spectrum from Eq. j order Fibonacci stub structure with the Fibonacci number
(9). F;. As is well known, the energy spectra of quasiperiodic

As there are four parameters of lengths for two real uni-structures form Cantor-like sets with Lebesque measure
modular matrice1 , andMg, the periodicity and symmetry equal to zero. The self-similarity and scaling property of the
of transmission spectra are determined by three length ratiosnergy spectra are characteristics of quasiperiodicity.

i.e., Ia/La, Ig/La, andLg/La. When and only whem,, Charge density distributions in Fibonacci structures are
lg, Lo andLg are all commensurate, the transmission andn general aperiodic and inhomogeneous, as the system is in
energy spectra have periodicity and symmetry for eigenvalthe critical states. We here present two examples with param-
uesk. It is very interesting to note that in the incommensu-etersl ,=Ig=L,=1, Lg=1/2, andj =13, as shown in Figs.
rate case the quasiperiodic behaviors for transmission ant(a) and 12b). They, with different transmission probabili-
energy spectra are obscure. To examine the quasiperiodicities, appear to display “weak” and “strong” statistical self-

of the system more clearly, we consider only the commen-

surate cases below.

Typical results of electronic transmission through a Fi- 10}
bonacci stub structure are plotted in Fig. 10, where the pa-
rameters ar¢=13, |,=Ig=L,=1, Lg=1/2. Due to the pe-
riodicity and the symmetry of the transmission spectra, we
need only consider the first half perit: (0,77] to show the
quasiperiodic behaviors. From Fig. (8) we can see that
transmission bands and gaps are tri-branching hierarchical
and self-similar. Figure 10) is the enlargement of central

(a)

05

region of Fig. 10a). In fact, transmission bands and gaps J”J

correspond nearly to the electronic energy bands and gaps of 0o} | L

the Fibonacci stub structure in the rational approximation. %5 o os o5 e
To calculate the electronic energy spectra, we first get

M_;=M;M,* from My=Mg andM,=M,, then obtain ol

X_1=cogk(lo—1g)]+ 7 siMk(lo—Ig)][cot(kLa)
—cot(kLg)],

0.5

xo=cogKklg)+ % sin(klg)cot(kLg),

(35 i
x,=cogkl,) + 2 sin(kly)cot(kL,), J J
ol BRI
wherex;=(1/2)TrM;. For the present Fibonacci structure, e o o2 om0k os
the matrix map gives a trace maf,;=2X;X;_1—Xj_2, kin

from which the energy spectra can be obtained in the rational

imatior? The f | d in th lculati . FIG. 10. The first half period of the transmission spectrum for a Fibonacci
approximafion. the formula used in the calculaion 15 stub structure with parametetsy,=I,=1g=1, Lg=1/2, andj=13. (a

Transmission coefficient vs the wave vectok; (b) the enlarged central

Xj(K)=cog QF;l). (36) part of (a).
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are eigenstates with both perfect resonant transmission and
. “ , / statistical self-similarity. In fact, from Eq8), perfect reso-
@ 7 // nant transmission requirg$1(N)|?=|M;|?=2. According
. // ! / to the parametrization of the matrix elemefftshe global
. ' y / // transfer matrixM; must be written in the form
K 16 /
/! , cose;  sin ¢
Ry 052 0.56 060 // i~ —sino: coso: |’ (37)
£ Ll / P ®i
/ . .
o // » where ¢; is a phase factor determined by the parameters of
/ / e the Fibonacci structure. However, since quasiperiodicity
1k / 3 makes the energy spectra as well as transmission spectra to
, / £ be singular continuous, we cannot expect that in self-similar
// 2s ) states there are eigenvalues to fulfill this condition of perfect
ol 7/ ] PN transmissiorf® Numerical calculations show that there is not
nF, any eigerk satisfying|M;|?=2.
03 v 05 o8 o o5 An invariant 1 =x2_,+x7+x7, 1= 2% XX 1~ 1 s

K/ usually chosen to characterize the quasiperiodicity of Fi-
bonacci structures. As the expressionsxof;, Xq, X; for
FIG. 11. The first half period of the energy spectrum of a Fibonacci stubFiponacci stub structures have already been derived, it is

structure with the same parameters as in Fig. 10. Ifeeis the enlarged - ; ;
central part; insetb) is the log-log plot of the total bandwidtW; vs the easy to find a precise expressionlais

Fibonacci numbeF; for j=2-16.

| = #{[sir?(kl)cot(kLg) — sir?(klg)cot kL) ]?
+[sin(kly)cog kla)cot kLg) —sin(klg)cogklg)

X cot(kL )12+ sin(kl 4)sin(klg)siMk(l .~ 1g)]

similar behaviors. The transmission coefficients of Figs.
12(a) and 12b) are T=0.9997501 and 0.1038452, respec-
tively. From somewhat self-similar behavior and nearly reso-

nant transmission shown in Fig. (B, we may ask if there X cotlkLa)cottkLg)[cot(kLg) —cottkLa) ]} (38)
We here consider two simple cas€b. Lo=Lg=L:
I =% cot(kL)sir’[k(I1a—1g)]. (39

or In this expression, if,=1z, thenl =0, which corresponds to

a periodic stub structure. Ih# 1z, in general)] #0 for most
k eigenvalues and thus the quasiperiodicity plays a crucial
role. (2) la=lg=1:

I = 1 sir?(kl)[cot kL) — cot(kLg)]?. (40)

20
Periodicity appears wheh,=Lg. If we takel,=lg=Lx
=1, Lg=1/2, thenl =0.25; the quasiperiodic behaviors are
clearly seen in Figs. 10, 11 and 12.

Iyl

20

FIG. 12. The charge density distributions of a Fibonacci stub structure with
the same parameters as those in Fig. 18 k=0.4094353;, T
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=0.9997501;(b) k=0.806257, T=0.1038452.

400

An impressive example to show the role of invariauig
in the central part of the transmission spectrum. The numeri-
cal results around=0.5372 are shown in Figs. (&, 13(b),
and 13c) for j=10,13,16, respectively. It is interesting to
note that they are very similar, but the widthskofn trans-
mission regions are different. The width ratio/w3= «
~5.2 for j=10 and 13 is almost the same as thgt/wg
for j=13 and 16. In facte=[1+4(1+1)?]¥2+2(1+1) is
just the scaling index of the renormalization group transfor-
mation of the six-cycle trace mapindeed a~5.2 if |
=0.25. The fact that the fine structures of Fig.(d3are
more similar to Fig. 1&) than Fig. 18b) implies that the six
cycle is strict. We have also performed the numerical inves-
tigation to j=9,12,15, andj=8,11,14, and found that the
six-cycle behavior is robust, although the patterns of trans-
mission spectra are different from each other. Actually, this
result for electronic transmission is analogous of electromag-
netic waves in Fibonacci dielectric multilayers previously
investigated theoretically and experiment&fly Although
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= 05 FIG. 13. The transmission spectra of a Fibonacci stub
structure arounk=0.5372,(a) j=10; (b) j=13; (c)
j=16. The parameters are the same as those in Fig. 10.
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significant theoretical efforts on electronic transport of Fi-tures and have found that the length parameters chosen must
bonacci structures have been ma8& more experimental be commensurate to exhibit the quasiperiodic behaviors. Be-
investigations are awaited, particularly those on the presemfause of this, except for a few incommensurate examples, we
mesoscopic structures proposed by us, which presents sorgve paid much attention to the commensurate cases. The

challenge for experimentalists. physical implications of the incommensurate cases are
awaited to be further explored. The charge density distribu-
VI. SUMMARY AND REMARKS tions display the wave coherence in various serial stub struc-

. . . . tures. There are band edge localized states and extended
We have studied the electronic behaviors in quantum . L )
states in the periodic stub structures, defect localized states

wires with serial stubs. A general theory of quantum wave- . . .
: . as well as extended states in the serial stub structures with a
guide based on the transfer matrix method has been devel-

oped and then is used to treat periodic stub structures, serigfafect stub, and critical states in the Fibonacci stub struc-

stub structures with a defect stub and Fibonacci stub struéyres' . ) . )
Although real quantum wires involve disorder and inter-

tures. A number of interesting physical properties in connec- . : ;
tion with the electronic transmission, energy spectra an@ctions, to capture quasi-one-dimensional feature and for

charge density distributions in these structures have beeHMplicity, we have focused our attention to a single-channel
found theoretically. We have emphasized the important roldree-electron model, which seems to be a reasonable approxi-
of the relative ratios of lengths of segments and stubs, anfation for the highly pure samples with significantly long
found that whether there are periodicity and symmetry in thenean free paths. In the network described by this model the
transmission and energy spectra depends on the commengigattering is solely determined by the geometric nature of the
rability of the length parameters. If there is one length ratiosystem, and the relevant quantum interference effects can be
which is incommensurate, then the transmission and energyell understood. It is worth pointing out that transport prop-
spectra have no periodicity and symmetry even for periodi@rties of serial stub structures addressed here may be verified
stub structures. We have also proposed Fibonacci stub struby experiments because, with the advances of nanofabrica-
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tion technology, fabrication of various serial stub structures*Highly Conducting One-Dimensional Soljdsdited by J. T. Devreese, R.
is feasible. For practical measurement, the transmission spec®- EVfﬁgcﬁn:n\é-j- ;320'35?2('5\'/6n;?ﬁeggggééwﬁ
tra_dlsczussedglabove are closely relateq t.o the coqductancé\'c_ Kittel, Introduction to Soliﬁ State P);lysyic%th ed.(Wiley, New York,
G=(2e7/h)T.>" Actually, at least two existing experiments 1996.

appear to be relevant to our theoretical considerations. Kou4g. abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrish-
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crystal with a corrugated channel in the two-dimensional M- Kohmoto, L. P. Kadanoff, and C. Tang, Phys. Rev. L&0, 1870

(1983; M. Kohmoto and Y. Oono, Phys. Letil02A, 145 (1984; M.
electron gas of a GaAs-AlGaAs heterostructure by means of Kohmoto, B. Sutherland, and C. Tang, Phys. Re\853 1020 (1987).

split-gate techniqu&’ Its wide-narrow-wide structure is op Graja, Low-Dimensional Organic Conducto§Vorld Scientific, Sin-
similar to the periodic stub structure discussed here and thegapore, 1992
subbands can be treated as independent current channe£§- Datta and M. J. McLennan, Rep. Prog. Pt§3.1003(1990. _
The conductance measurement shows the bands and gap! évEéaYSZ?rkd'fésS ?,r;mﬁng F;'Z';e”e”a's"“d State Physicscademic,
which exhibit main features are somehow relevant to OUreg,antum Coherence in Mesoscopic Systeedited by B. Krame(Ple-
results. Also, a Fibonacci lattice with corrugated 30 units num, New York, 1991
was fabricated by Katsumott al. Their resistance measure- “°Mesoscopic Phenomenon in Soliesiited by B. L. Altshuler, P. A. Lee,
ment exhibited quasiperiodic behavidPsWe think that the ~,,@"d R- A. WeblbNorth-Holland, Amsterdam, 1991 =

. . . . Y. Imry, Introduction to Mesoscopic Physi¢®©xford University Press,
proposed Fibonacci stub structure may be fabricated in a,, York, 1997,
similar way, and thus the conductance measured may ber. j Thomton, Rep. Prog. Phys8, 311(1995.
compared with our results. On the other hand, the electro®*F. Sols, M. Macucci, U. Ravaioli, and K. Hess, Appl. Phys. L&#. 350
magnetic localized mode has been observed in optical waqu\(,fi%?r;a A;pghzgyzig EBQSZ(ESS?A L Phys. LE. 1350(1992: Z
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the defect, which behaved as a resonator or filter with relas; g ‘shi and B. Y. Gu, Phys. Rev. 55, 4703(1997).
tively higher quality factor, is suggestédllt is therefore 163 B. Xia, Phys. Rev. BI5, 3593(1992.
quite natural to believe that for the serial stub structure with’P. S. Deo and A. M. Jayannavar, Phys. Re\6@ 11629(1994.
a defect, a state located in the gap can also be detected ané P- Kouwenhoven, F. W. J. Hekking, B. J. van Wees, C. J. P. M.

. . N Harmans, C. E. Timmering, and C. T. Foxon, Phys. Rev. 16§t.361

may play a useful role in device applications. Clearly, tech- (1990.
nological developments have led and will continue to lead to°s, Katsumoto, N. Sano, and S. Kobayashi, Solid State ComB&223
smaller and smaller scales of nanostructures which will min- (1993.
jaturize real electron devices further. 2R, Courant and D. HilbertMethods of Mathematical Physics(Inter-

. science, New York, 1953

. Our _general theory can also be used to treat other aperhI. S. Gradshteyn and |. M. RyzhiKable of Integrals, Series and Products

odic serial st_ub structures, such as Thue-Morse sequence, Ofacademic, New York, 1980

even more disordered structures with defect stubs and defe¥p. J. Griffiths and N. F. Taussig, Am. J. Phy9, 883(1992.

segments. Different structures will lead to different transmis-°S. Tamura and J. P. Wolfe, Phys. Rev36 3491(1987; S. Tamura and
ion ra which bring the benefits of band tailoring to,," Nori- ibid- 40, 9790(1990.

30 . spectla . % | b |g t .e be e s 0 Ibabld ta 3 hg Itoz“F. Capasso, C. Sirtori, J. Faist, D. L. Sivro, S. N. G. Chu, and A. Y. Cho,
evice exp orat!o It is also interesting, valuable, anad chal- natyre (London 358 565 (1992.

lenging to take into account the electron-electron interaction®p. Hawrylak and J. J. Quinn, Phys. Rev. L&, 380 (1986.

in the serial stub structures. We hope the present work wilf°G. J. Jin, Z. D. Wang, A. Hu, and S. S. Jiang, J. Phys.: Condens. Matter

stimulate more experimental and theoretical interests on 10285(1996; Phys. Rev. BS5, 9302(1997; J. Phys. Soc. Jpré7, 49

.. . (1998.
similar mesoscopic structures. 2’M. Kohmoto, Phys. Rev. B4, 5043(1986; B. Sutherland and M. Ko-
hmoto, ibid. 36, 5877(1987).
ACKNOWLEDGMENTS 2@, J. Jin and Z. D. Wang, Phys. Rev. Lét, 5298(1997).

. M. Kohmoto, B. Sutherland, and K. Iguchi, Phys. Rev. L&8, 2435

This work was supported by Hong Kong RGC Grant No. (1987: W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor,

HKU262/95P and a CRCG grant at the HKU, the National ibid. 72, 633(1994.
. . . . . 0 H
Natural Science Foundation of China, the Provincial Naturailg- ':'U 3”" C. g FT>|hng, :gyzlsf‘l’é% 8331(1986.
. . . . . ..%IR. Landauer, Z. Phys. BS, .

Science Foundation of Jlangsu, an_d the _Spec_lal SCIentlflﬁJ. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S.
Research Funds for Doctorate Candidates in Chinese Univer-ran, 3. . Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen,

sities. Nature(London 390, 143(1997.

Downloaded 13 Nov 2006 to 147.8.21.97. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



