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The electronic behaviors in quantum wires with serial stubs are studied. A general theory of
quantum waveguide based on transfer matrix method is developed and is used to treat periodic stub
structures, serial stub structures with a defect stub, and Fibonacci stub structures. A number of
interesting physical properties in connection with electronic transmission, energy spectra, and
charge density distributions in these structures, are found theoretically. In particular, we find that
whether there are periodicity and symmetry in the transmission and energy spectra depends on the
commensurability of the length parameters. If one length ratio is incommensurate, then the
transmission and energy spectra do not exhibit periodicity and symmetry even for periodic stub
structures. In particular, the quasiperiodic behaviors are shown in Fibonacci stub structures
proposed by us whenever the length parameters are commensurate. The experimental relevance is
also addressed briefly. ©1999 American Institute of Physics.@S0021-8979~99!05002-1#
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I. INTRODUCTION

Electronic behaviors in one-dimensional periodic, dis
dered and quasiperiodic structures are important subjec
condensed matter physics.1,2 Historically, there have been
many well-known models, such as the Kronig-Penn
model, describing an electron in a one-dimensional perio
structure. In spite of the simplicity, these models disp
many main features of periodic structures, especially ba
and gaps, so they have been introduced in the course of
state physics. All electrons occupy the extended state
one-dimensional periodic structures.3 Since there exists dis
order, for example, impurities or defects, in otherwise pe
odic structures, localized modes may appear. Particula
the scaling theory of localization indicates that any disor
will give rise to localized modes in one-dimension
systems.4 It has been found theoretically that the on
dimensional quasiperiodicity of Fibonacci structures has s
stantial effects on energy spectra and eigenstates which
intermediate between periodic and disordered structures.
energy spectra are singular continuous and the eigens
are critical.5

In recent years, there has been significant progres
one-dimensional physics, which has been not only a heur
tool but also a real physical entity. On one hand, many po
mer materials with long molecular chains can be regarde
one- or quasi-one dimensional;6 on the other hand, man
artificial structures, for example, quantum wires, have o

a!Electronic mail: zwang@hkucc.hku.hk
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dimensional characteristics.7,8 We are concerned with the lat
ter which belongs to mesoscopic physics.9–11 In a mesos-
copic system, the essence is that an electron can trans
coherently across the whole system with negligible inela
scattering. As a result, a variety of interesting interferen
phenomena can be exhibited, such as the quantized con
tance in the point contacts, persistent currents in meta
loops, universal conductance fluctuations, etc., which p
vide potential applications to the fabrication of new quantu
interference devices.

With recent significant advancement in the fabricati
technology of ultrasmall structures,12 the molecular beam ep
itaxy together with electron-beam lithography can provide
with many mesoscopic metal or semiconductor structu
Furthermore, the scanning tunneling microscope has ma
possible to fabricate atomic-scale structures. Using th
techniques, one can make extremely high mobility quant
wires with narrow widths, in which only a few of the lowes
subbands are occupied and the transport is approxima
ballistic. The allowed modes in the quantum wires are th
considered to be the waveguide modes. Since electr
transport in quantum wires with various geometric structu
is not only a basic physical problem but also relevant
useful electronic devices, it has attracted considerable at
tion, in particular, the quantum waveguide theory has b
used extensively.13–17 For example, Solset al. studied semi-
conductor stub structures that may exhibit transis
function.13 The theoretical calculation showed that relative
small changes in the stub length can induce significant va
tion in the electron transmission across the structure. Th
7 © 1999 American Institute of Physics
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1598 J. Appl. Phys., Vol. 85, No. 3, 1 February 1999 Jin et al.
have also been some experiments to successfully verify
waveguide characteristics of electron transport throug
wide-narrow-wide structure by the splitting-ga
technique.18,19 In fact, more strikingly, many theoretical pre
dictions in mesoscopic physics have now been~or will be in
the near future! verified by experiments.

In this article, we systematically study electronic tran
port in quantum wires with serial stubs, in which disord
and interactions are assumed to be negligible. In Sec
using the transfer matrix method, we develop a gene
theory of quantum waveguide with serial stub structures. T
theory is used to treat the periodic stub structures in Sec
the serial stub structures with a defect stub in Sec. IV,
Fibonacci stub structures in Sec. V. In Sec. VI, a brief su
mary and remarks are presented.

II. GENERAL THEORY

Recently, electronic transport of quantum wavegu
structures has been addressed considerably.13–15 Xia pro-
posed a simple one-dimensional waveguide theory for qu
tum wires with one or two stubs.16 Deo and Jayannavar ex
tended it to multiple serial stub structures.17 In this article,
we consider a quantum wire attached with a series of s
perpendicular to it as shown in Fig. 1. We label the w
segments with stubs one by one with positive integersn from
left to right. In general, the lengths of the segments and s
may vary along the wire. When the lateral cross section
the wire is sufficiently small and at sufficiently low temper
tures, electrons can only occupy a few lowest transve
quantum states, and there are strong confinements in the
transverse directions, then only electronic motion in the l
gitudinal direction is of interest. The system considered
quasi-one-dimensional and retains quantum interference.
assumed that no other scattering potentials are present e
for the geometrical effect of the intersections of the stu
with the main wire, and only back scattering is the relev
scattering mechanism. So in any segment or stub, an elec
is free particle-like. An electron with energye5\2k2/2m (k
is the wave vector but can also be used to represent
energy itself! injected from one side could pass through t
structure ballistically, provided that the continuum con
tions are satisfied. Also for simplicity, we use the Griffi

FIG. 1. A schematic serial stub structure. The lengths of thenth segment
andnth stub arel n andLn , respectively.
Downloaded 13 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
he
a

-
r
II,
al
e

II,
d
-

e

n-

bs

bs
f

e
wo
-
s
is
ept
s
t
on

he

-

boundary conditions below, which ensure the continuity
wave functions and the conservation of current density.

The electronic wave functions in thenth segment and
nth stub are plane wave-like:cn(z)5An exp(ikz)1Bn

3exp(2ikz) andfn(z)5Cn exp(ikz)1Dn exp(2ikz), respec-
tively. Hereafter, a local coordinate is chosen for each s
ment or stub, with its origin being located at the left-ha
side of the segment or downside of the stub. In Fig. 1, if
upper end of each stub which can be controlled by exte
gate voltage is rigid, by applying the matching conditions
wave functions and their derivatives at the intersections,
electronic amplitudes in the (n11)th segment can be ob
tained from thenth segment as

S An11

Bn11
D5Tn11,nS An

Bn
D , ~1!

whereTn11,n is a 232 transfer matrix which can be writte
as

Tn11,n5S 12
i

2
cot~kLn! 2

i

2
cot~kLn!

i

2
cot~kLn! 11

i

2
cot~kLn!

D
3S eikl n 0

0 e2 ikl nD . ~2!

Since all the lengthsl n andLn are combined with the wave
vector k, we can takel n and Ln as well ask to be dimen-
sionless quantities in the following. By a transformation

S An

Bn
D5S 1 i

1 2 i D S an

bn
D , ~3!

Tn11,n is transformed intoMn11,n for a new set of ampli-
tudes (an ,bn), which satisfies the expression as

S an11

bn11
D5Mn11,nS an

bn
D , ~4!

where

Mn11,n5S 1 0

2cot~kLn! 1D S cos~kln! 2sin~kln!

sin~kln! cos~kln!
D .

~5!

A specific merit of Eq.~5! is its form of real functions, which
will give tremendous convenience for further analytic tre
ment. All of the transfer matricesMn11,nsPSL~2,R!, the set
of all real 232 matrices with determinant one. If the length
of all segments and stubs and the initial values of the am
tudes (a1 ,b1) are known, then all the amplitudes along th
wire can be obtained recursively from

S an11

bn11
D5M ~n!S a1

b1
D , ~6!

whereM (n)5P i 51
n M i 11,i . In fact, when we treat electroni

transport of the serial stub structure, the incident electron
the system is described by exp(ikz), and the reflection ampli-
tude is R which can be obtained from the global transf
matrix, thena15(11R)/2, andb15(12R)/2i . The system
becomes deterministic.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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For the wire withN serial stubs, after all of the transfe
matricesM (n)s are obtained, many important physical qua
tities can be readily derived. As the global transfer mat
M (N)5P i 51

N Mi 11,i , the reflection amplitude is

R52
1

21uM ~N!u2 $@M11
2 ~N!2M12

2 ~N!1M21
2 ~N!

2M22
2 ~N!#22i @M11~N!M12~N!

1M21~N!M22~N!#%, ~7!

and the transmission coefficient is

TN5
4

21uM ~N!u2 , ~8!
n-
il

u
e

s
r
w

re

si
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where uM (N)u25(m,nuMm,n(N)u2(m,n51,2) is the sum of
the squares of the four matrix elements. By using the p
odic boundary condition of the finite serial stub structure,
energy spectra can also be obtained from

u 1
2 TrM ~N!u<1. ~9!

On the other hand, charge density distribution in thenth
segment is determined by

ucn~z!u25uAneikz1Bne2 ikzu2

52@ uanu21ubnu21~ uanu22ubnu2!cos~2kz!

2~anbn* 1an* bn!sin~2kz!#, ~10!

where
uanu26ubnu25
1

21uM ~N!u2 $@M11
2 ~n!6M21

2 ~n!#@M12
2 ~N!1M22

2 ~N!#

1@M12
2 ~n!6M22

2 ~n!#@M11
2 ~N!1M21

2 ~N!#2@M11~n!M12~n!

6M21~n!M22~n!#@M11~N!M12~N!1M21~N!M22~N!#% ~11!

and

anbn* 1an* bn5
2

21uM ~N!u2 $M11~n!M21~n!@M12
2 ~N!1M22

2 ~N!#

1M12~n!M22~n!@M11
2 ~N!1M21

2 ~N!#2@M12~n!M21~n!

1M11~n!M22~n!#@M11~N!M12~N!1M21~N!M22~N!#%. ~12!
d
as

ve-

n

e

Equations~5! and~8!–~12! are some general results of qua
tum waveguide theory for serial stub structures, which w
be used to treat periodic stub structures, serial stub struct
with a defect stub, and Fibonacci stub structures in the n
three sections.

III. PERIODIC STUB STRUCTURES

We would like to point out first that it is possible for u
to consider some more complicated periodic stub structu
with more than one segment and stub in each cell, but
here would rather discuss the simplest case in which the
only one type of building block, i.e.,l n5 l andLn5L for any
n in Fig. 1. This is a very simple case where only one ba
transfer matrixMn11,n5M exists, and

M5S m11 m12

m21 m22
D

5S cos~kl ! 2sin~kl !

sin~kl !2cos~kl !cot~kL! cos~kl !1sin~kl !cot~kL!
D .

~13!

As for n51,...,N, it is easy to show that
l
res
xt

es
e
is

c

M ~n!5Mn

5S m11Un21~x!2Un22~x! m12Un21~x!

m21Un21~x! m22Un21~x!2Un22~x!
D ,

~14!

where

x5 1
2 ~m111m22!5cos~kl !1 1

2 sin~kl !cot~kL! ~15!

and Un(x) is a Chebyshev polynomial of the secon
kind20,21 satisfying the second order differential equation

~12x2!Un9~x!23xUn8~x!1n~n12!Un~x!50. ~16!

The prime represents the derivative operator. For con
nience, we consider the solutions of Eq.~16! to be in real
form. Then for uxu<1, we can takex5cosu, and Un(x)
5sin@(n11)u#/sinu ; but for uxu>1, we defineuxu5coshu,
and Un(x)5sinh@(n11)u#/sinhu for x.1, and (21)n21

sinh@(n11)u#/sinhu for x,21. There is a recursion relatio

Un~x!52xUn21~x!2Un22~x! ~17!

for any x.
Take n5N in Eq. ~14! and after some calculations, w

can show

uM ~N!u2521F2~N,k,l ,L !, ~18!

where
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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F~N,k,l ,L !5cot~kL!UN21~x! ~19!

and the transmission coefficient is

TN5
4

41F2~N,k,l ,L !
. ~20!

This is a precise analytic expression which can be use
examine all results of periodic stub structures in Ref. 17. I
noted that Eq.~20! has a similar form for an electron passin
through finite Dirac combs.22 However, our approach is
simple and independent. As shown by numerical calculati
in Ref. 17, the transmission spectra have periodicity a
symmetry for wave vectorsk in some special length param
eters. From Eqs.~19! and ~20!, we can discuss these prob
lems more clearly and easily. In addition, we can also
from Eqs.~19! and ~20! that there may exist some resona
transmission points (TN51) when eigenvaluesk satisfying
F(N,k,l ,L)5cot(kL)UN21(x)50 ~on the other hand, anyk
satisfying F(N,k,l ,L)→6` leads to a zero transmission!.
Resonant transmission can be obtained by requiring

cos~kL!50 ~21!

or

sin~Nu!50, but sinuÞ0. ~22!

The solutions of Eq.~21! are simply given by

kL5~2m11!p/2, ~23!

wherem is any non-negative integer. The solutions of E
~22! lead to

cos~kl !1
1

2
sin~kl !cot~kL!5cosS g

N
p D , ~24!

whereg may take 1,...,N21,N11,...,2N21.
These resonant transmission points can be considere

be characteristics of periodicity and symmetry of transm
sion spectra. It will be clear at once that the periodicity a
symmetry of the transmission spectra are closely relate
the relative ratio ofl andL. For convenience, in this section
we always takeL51. We note that there are two distin
cases: the commensurate case whenl is a rational number
and the incommensurate case whenl is an irrational number.
For the commensurate case, the periodicity and the sym
try always exist, which can be seen from the following tw
typical examples.~1! When L5 l 51, Eq. ~24! is written as
(3/2)cosk5cos(gp/N). BecauseTN is an even function ofk
in this example, the period of the transmission spectra
Dk5p and the first period iskP(0,p#, with its symmetric
center located atk5p/2. For oddN, since there areN21
eigenvalues ofk satisfying Eq.~22! ~corresponding tog
51,...,N21), plusk5p/2 for Eq. ~21!, there are totallyN
resonant transmission points; for evenN, there are alsoN
21 eigenvalues ofk satisfying Eq.~22!, but g5N/2 gives
k5p/2 overlapping with one of the solutions of Eq.~21!, so
there are totallyN21 resonant transmission points.~2!
When L51, l 51/2, then @6 cos2(k/2)21#/4 cos(k/2)
5cos(gp/N). The period ofk for transmission spectrum i
2p, and the symmetric center of first period is atk5p.
There are 2N22 values forg51,...,N21,N11,...,2N21
Downloaded 13 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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to satisfy Eq.~22!. For odd N, the resonant transmissio
points ofk take 2N22 values, while for evenN, plus addi-
tional k5p/2 and 3p/2 satisfying Eq.~21! @but not satisfy-
ing Eq.~22!#, there are 2N resonant transmission points. Fig
ure 2~a! presents the numerical results of the first two perio
for N56. In Fig. 2~a!, there are 12 resonant transmissi
points in the first period and the second period, respectiv
Our method for discussing the periodicity and symmetry
well as for the calculation of the resonant transmission po
can be readily used in other commensurate cases. Actu
in more general commensurate cases,l 5q/p, p and q are
integers which are relatively prime. Equation~15! is thenx
5cos(qk/p)1(1/2)sin(qk/p)cotk. It can be seen that whenk
→pp1k, then x→(21)qx, the transmission coefficient
are identical for both wave vectors, so the period ofk is
Dk5pp.

To the best of our knowledge, the incommensurate c
has not been discussed in literature so far, but it is of inter
In this case,l is an irrational number. Then we cannot fin
any periodicity and symmetry for the transmission spectra
k varies, or to say, the period is infinite. This incommens
rability for transmission spectra can be analyzed from E
~15!, ~19! and ~20!, and one example is shown in Fig. 3~a!
for which we takel /L5(A521)/2, the reciprocal of the
well-known golden mean. Certainly, the resonant transm
sion points can still be determined from Eqs.~21! and ~22!.

FIG. 2. The first two periods of the transmission spectrum and disper
curve for a periodic stub structure with parametersL51, l 51/2 and N
56. ~a! Transmission coefficientT vs the incident wave vectork; ~b! the
wave vector of systemQ vs k.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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Note that some of resonant transmission points determ
from Eq. ~23! are just as in the commensurate case, but o
ers determined from Eq.~24! have no periodicity and sym
metry. Nevertheless, we find from numerical calculatio
that there is a rule for the total number of resonant transm
sion points in the incommensurate casel /L5(A521)/2. For
kP(0,2p#, or ~2p,4p#,..., the total number for resonan
transmission points is invariant in each region onceN is
determined. ForN>3, when N5odd number, it is 3(N
21), but whenN5even number, it is 3(N22).

Strictly speaking, there are no rigorous transmission f
bidden regions for finite serial stub structures. But as
number of stubs>4, the high transmission regions are sep
rated by the transmission valleys, which resemble forbid
regions. So transmission spectra can be compared with
energy band structures. Under the periodic approximat
by using Eqs.~9! and ~14!, we have

xUN21~x!2UN22~x!5cos~QNl!, ~25!

whereQ is the wave vector of the system with a large ‘‘un
cell’’ of N segments.23 Combined with Eq.~15!, one can
calculate the energy spectra of the periodic stub structu
The dispersion relations for commensurate and incomme
rate cases are shown in Figs. 2~b! and 3~b!. For clearness, we

FIG. 3. A part of the transmission spectrum and dispersion curve fo
periodic stub structure with parametersL51, l 5(51/221)/2, andN54. ~a!
Transmission coefficientT vs the incident wave vectork; ~b! the wave
vector of systemQ vs k.
Downloaded 13 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
ed
-

s
s-

r-
e
-
n
he
n,

s.
u-

use the extended zone scheme forQ. Energy bands to high
transmission region and energy gaps to transmission val
are one to one correspondent.

There are close relations between transmission co
cients and charge density distributions of the system thro
transfer matrices. But it can be understood from Eqs.~10!–
~12! that charge density distributions include more inform
tion than transmission coefficients. For a commensurate c
L51, l 51/2 andN56, from the first two periods of the
transmission and energy spectra shown in Fig. 2, we see
the period isDk52p and the symmetric point ofk is 2p
2k. By using Eq.~13!, it is found that whenk→2p6k a
couple of diagonal/off-diagonal matrix elements in Eq.~14!
change their signs simultaneously~or not!, thus Eqs.~11! and
~12!, which determine the envelopes of Eq.~10!, remain in-
variant. However, cos(2kz) and sin(2kz) in Eq. ~10! have no
periodicity and symmetry fork→2p6k. Figure 4 shows the
charge density distributions of two symmetrick values at the
transmission band edges of the first period in Fig. 2~a! with
transmission coefficientT50.1025619. The charge densi
distribution decreases monotonically fork50.314p, but de-
creases oscillatorily fork51.686p. Both are localized
modes exhibiting the characteristics of the edge states.

Figure 5 shows the charge density distributions for a
other commensurate example,L5 l 51 andN511, in which
two wave vectorsk chosen are located in the transmissi
interbands with resonant transmission coefficientT51. We
can see that they have the same envelopes fok
50.3104799p and its periodic pointk51.3104799p.

For an incommensurate case,L51 and l 5(A521)/2,
although the transmission and energy spectrum show inc
mensurate behavior as shown in Fig. 3, the charge den
distributions do not exhibit such feature. In Fig. 6, we p
the results of a resonant transmission case withN5100 and
k50.8199988p, which clearly show a periodic distribution

a

FIG. 4. The charge density distributions in a periodic stub structure for
symmetric wave vectorsk50.314p and 1.686p in the first period of trans-
mission spectrum with equal transmission coefficientT50.1025619. The
parameters are the same as those in Fig. 2.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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of the charge density. We wish to point out that in bo
commensurate and incommensurate cases for resonant
mission points corresponding tok5p/2,3p/2,..., thecharge
density distributions are homogeneous, because an ele
moves along the quantum wire as if there are no stubs, w
can be directly seen from Eq.~13!.

IV. SERIAL STUB STRUCTURES WITH A DEFECT
STUB

As discussed by Deo and Jayannavar,17 if there is a de-
fect stub in an otherwise periodic stub structure, there m
appear some positive energy bound states in the transmis

FIG. 5. The charge density distributions in a periodic stub structure for
periodic wave vectors in the first two periods with same resonant trans
sion coefficientT51. The parameters areL5 l 51, and N511. ~a! k
50.3104799p; ~b! k51.3104799p.
a

to

Downloaded 13 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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spectra as shown in their Figs. 4 and 5. However, one of t
conclusions that bound states disappear as the numbe
stubs increases is misleading. Actually, when we only i
prove the numerical calculation precision, we find that t
bound states still exist with the same parameters as thei
their Fig. 5, and the corresponding transmission coefficie
are close to one. Notice that, in our treatment to be deta
below, unlike Ref. 17, we need not calculate the total trans
matrix from the numerical product of the individual transf
matrices and thus the numerical error will not be accum
lated, leading to much smaller error, which appears to
crucial in some sensitive cases.

In a periodic semiconductor superlattice with a cent
artificial defect well, there is direct evidence of positiv
bound state, which is a spatially localized state formed
Bragg reflection.24 Based on the similar physical origin,
defect stub in an otherwise periodic stub structure may
duce spatially localized states by multiple reflections. W
refer to the relevant wave vectors, i.e., energies, as isol
modes. If the length of the defect stub isLd , then the transfer
matrix corresponding to the defect stub reads

o
s-

FIG. 6. The charge density distributions in a periodic stub structure fo
resonant transmission wave vectork50.8199988p. The parameters areL
51, l 5(51/221)/2, andN5100.
Md5S cos~kl ! 2sin~kl !

sin~kl !2cos~kl !cot~kLd! cos~kl !1sin~kl !cot~kLd!
D . ~26!
For simplicity, we consider that the defect stub is located
the center of an otherwise periodic stub structure withS
stubs arranged at each side of the defect stub and the
number of stubs beingN52S11. The global transfer matrix
is then
t

tal

M ~2S11!5MSMdMS. ~27!

After some tedious derivations, we obtain

uM ~2S11!u2521F2~2S11,k,l ,L,Ld!, ~28!
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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where

F~2S11,k,l ,L,Ld!5cot~kL!@U S
2~x!2U S21

2 ~x!#

2@cot~kL!2cot~kLd!#@U S
2~x!

22 cos~kl !US~x!US21~x!

1U S21
2 ~x!# ~29!

andx is still expressed in Eq.~15!. The transmission coeffi
cient is

T2S115
4

41F2~2S11,k,l ,L,Ld!
. ~30!

As pointed out by Solset al., a small change in the stu
length may induce dramatic changes in the transmission f
wide range of energy.13 This is a remarkable result whic
may lead to useful device applications. TakingL5 l 51, Ld

50.75, andS54, from Eqs.~15!, ~29!, and ~30!, we can
determine that the period of transmission spectrum fork is
4p and the symmetric center of the first period is atk
52p. The transmission spectrum of the first period is sho
in Fig. 7. We can see that a few resonant transmission p
exist and some of them are thinner. How can one select
isolated modes? This question appears to be important, b
yet to be answered. Deo and Jayannavar17 found only two
isolated modes in the forbidden regions for the periodic s
structures ifS is not too large. But it may not be reliable t
depend on the limited numerical results mainly because
the restriction on the calculation precision of their metho
We think it is constructive to address the problem as follow
In the absence of any defect stub, i.e.,Ld5L in Eq. ~29!, the
high transmission regions forming bands correspond touxu
<1; but whenLdÞL, there may exist narrow transmissio
bands satisfyinguxu.1. Furthermore, in each of the narro
transmission bands, there may exist a resonant transmis
point, so we define the isolated modes as the solution

FIG. 7. The first period of the transmission spectrum for a serial stub st
ture with a defect stub. The parameters areL5 l 51, Ld53/4, S54, and
N52S1159.
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F(2S11,k,l ,L,Ld)50 with uxu.1. From this criterion, we
can judge that there are six isolated modes in Fig. 7. T
arek50.7390465p, 1.1437939p, 1.7777596p, 2.2222404p,
2.8562061p, and 3.2609535p. These six isolated modes ar
symmetric aboutk52p. Among them, the second and th
fifth are two isolated modes already obtained in Ref.
Four other isolated modes are located at the edges of
original transmission bands, but they are really isola
modes as will be verified from the charge density distrib
tions. WhenS increases, the positions of isolated modes w
move a little. As S→`, the condition of F(2S
11,k,l ,L,Ld) being finite leads to

cot2~kLd!22 cot~kL!cot~kLd!24 cot~kl !cot~kL!1450.
~31!

As L5 l 51, Ld50.75, six solutions of Eq.~31! are very
close to the solutions forS54. They arek50.7434217p,
1.1438645p, 1.7781556p, 2.2218444p, 2.8561355p, and
3.2565783p.

As discussed before, in the periodic stub structures th
are correspondences between the transmission spectra
the energy spectra. This is still true for the serial stub str
tures with a defect stub. From Eqs.~9! and ~27!, we have
instead of Eq.~25!

x8U2S~x!2U2S21~x!5cos@Q~2S11!l #, ~32!

where

x85cot~kL!1 1
2 sin~kl !cot~kLd!. ~33!

Numerical calculation confirms that there are very narr
bands related to isolated modes in the transmission spe
and they become narrower and narrower asS increases. This
is consistent with the calculation on the density of states
Ref. 17.

The charge density distributions of serial stub structu
with a defect stub can also be obtained by using Eqs.~10!–
~12! with matrix elements given by Eqs.~13!, ~14!, ~26! and
~27!. Figure 8 shows the charge density distributions of t
isolated modesk50.7411876p and 3.2588124p for S55. It
is noted that these two eigen-wave vectors are located
tween those forS54 andS5`. The charge density distri
butions for these two symmetric modes separated from
original transmission bands have the same envelope,
there are more oscillations for largerk. It is seen from Fig. 8
that for these two isolated modes, as well as for four ot
isolated modes, charge density distributions exhibit the f
ture of localized states~bound states!. The maximums of
their envelopes are all at the center of the system. It can
expected that for largerS, the localization will be clearer
which has been confirmed in our numerical calculations
to S550. After S510, the charge density distribution o
each isolated mode concentrates around the center of
structure with a very sharp peak. It can be roughly und
stood that the origin of the localized states is the condit
for isolated modes,uxu.1, which leads to Un21(x)
5sinh(nu)/sinhu or (21)n21 sinh(nu)/sinhu. For largern,
Un21;exp(nu). The factor exp(nu) will enter into the Eqs.

c-
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~10!–~12!, so the charge density distribution in thenth seg-
ment is related to the exponential factor exp(nu).

As has been seen that in the presence of a defect stu
transmission and energy spectra of an otherwise peri
stub structure change dramatically, especially when isola
modes corresponding to localized states appear. On the o
hand, it is reasonable to believe that other states corresp
ing to the eigenvaluesk satisfyinguxu<1 will also change a
lot. Figure 9 shows the charge density distributions in
serial stub structure with a defect stub for the same twk
values as in Fig. 5 for the periodic stub structure. The cha
density distribution in Fig. 9~a! is somewhat similar to Fig
5~a!, but no symmetry about the center exists. The differe
between Fig. 9~b! and Fig. 5~b! becomes even significan
Transmission coefficientsT50.9668976 for Fig. 9~a! andT
50.0148286 for Fig. 9~b!.

Using the theoretical method introduced in this secti
we can treat other serial stub structures with a defect stub
examples,~1! L5 l 51, Ld52, S54; and ~2! L5 l 51, Ld

510, S550. From Eqs.~15!, ~29! and ~30!, the periods of
the transmission spectra for both examples areDk5p, so
we only need to consider the first period~0,p! which has the
symmetry center atk5p/2. The solutions of F(2S
11,k,l ,L,Ld)50 with uxu.1 give out two isolated mode
k50.2523298p and 0.7476702p for case~1!; six isolated
modes k50.0919845p, 0.1795247p, 0.25p, 0.75p,

FIG. 8. The charge density distributions in a serial stub structure wit
defect stub for two symmetric resonant transmission wave vectors in the
period of the transmission spectrum. The parameters areL5 l 51, Ld

53/4, S55, andN52S11511. ~a! k50.7411876p; ~b! k53.2588124p.
Downloaded 13 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
the
ic
d

her
d-

e

e

e

,
or

0.8204753p, and 0.9080155p for case~2!. The numerical
results of the charge density distributions for these isola
modes show that they are all localized states with maxim
at the center of the structures.

We can also distinguish the commensurate and inco
mensurate behaviors in transmission spectra for serial
structures with a defect stub. But now there are three par
etersL, l , andLd , so bothl /L andLd /L need to be consid-
ered. The situation will be more complicated. We ha
checked a simple example,L5 l 51, Ld5(A521)/2. The
transmission and energy spectra show no periodicity
symmetry at all, just like Fig. 3, but with different shape
There are also some resonant transmission isolated mo
Their charge density distributions reflect the characteris
of localized states as well.

V. FIBONACCI STUB STRUCTURES

A Fibonacci stub structure is composed of two buildi
units denoted by A and B. As shown in Fig. 1, unit A~B! is
a wire segment of lengthl A( l B) with a perpendicular stub o
lengthLA(LB) which can be varied by the external gate vo
age. Using these two units, the Fibonacci stub structur
formed according to the ruleSj 115$Sj ,Sj 21%, with S15A
andS25AB. For example,S55ABAABABA. For simplic-

a
rst

FIG. 9. The charge density distributions in a serial stub structure wit
defect stub for two wave vectors the same as those in Fig. 5. The param
are the same as those in Fig. 8.~a! k50.3104799p, T50.9668976;~b! k
51.3104799p, T50.0148286.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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ity, we take the total segment numberN5F j , wherej is the
Fibonacci order andF j is the Fibonacci number which satis
fies F j 115F j1F j 21 , with F15F051. Corresponding to
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the two building units, there are two basic transfer matric
Mn11,n5MA or MB . From Eq.~5!, the amplitude transfor-
mation of electron through unitA can be written as
MA5S cos~klA! 2sin~klA!

sin~klA!2cos~klA!cot~kLA! cos~klA!1sin~klA!cot~kLA!
D , ~34!
am-
sion

the
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he
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cci
while for unit B, it is only needed to substituteA→B in the
matrix expression ofMA to getMB .

One can find a matrix map for Fibonacci structure
M j 115M j 21M j , with M05MB andM15MA .5 For a finite
Fibonacci stub structure withN5F j , the total transfer ma-
trix of the system can be obtained by the recursion relat
The transmission coefficient of theN-unit system can be
calculated from Eq.~8!, and the energy spectrum from E
~9!.

As there are four parameters of lengths for two real u
modular matricesMA andMB , the periodicity and symmetry
of transmission spectra are determined by three length ra
i.e., l A /LA , l B /LA , andLB /LA . When and only whenl A ,
l B , LA and LB are all commensurate, the transmission a
energy spectra have periodicity and symmetry for eigen
uesk. It is very interesting to note that in the incommens
rate case the quasiperiodic behaviors for transmission
energy spectra are obscure. To examine the quasiperiod
of the system more clearly, we consider only the comm
surate cases below.

Typical results of electronic transmission through a
bonacci stub structure are plotted in Fig. 10, where the
rameters arej 513, l A5 l B5LA51, LB51/2. Due to the pe-
riodicity and the symmetry of the transmission spectra,
need only consider the first half periodkP(0,p# to show the
quasiperiodic behaviors. From Fig. 10~a!, we can see tha
transmission bands and gaps are tri-branching hierarch
and self-similar. Figure 10~b! is the enlargement of centra
region of Fig. 10~a!. In fact, transmission bands and ga
correspond nearly to the electronic energy bands and gap
the Fibonacci stub structure in the rational approximation

To calculate the electronic energy spectra, we first
M 215M1M0

21 from M05MB andM15MA , then obtain

x215cos@k~ l A2 l B!#1 1
2 sin@k~ l A2 l B!#@cot~kLA!

2cot~kLB!#,

x05cos~klB!1 1
2 sin~klB!cot~kLB!,

~35!

x15cos~klA!1 1
2 sin~klA!cot~kLA!,

wherexj5(1/2)TrM j . For the present Fibonacci structur
the matrix map gives a trace mapxj 1152xjxj 212xj 22 ,
from which the energy spectra can be obtained in the ratio
approximation.5 The formula used in the calculation is

xj~k!5cos~QFj l !. ~36!
s
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All permitted k values are in the range21<cos(QFjl)<1.
Figure 11 shows the energy spectrum with the same par
eters of Fig. 10. The bands correspond to the transmis
region, while the gaps forbidden region. The inset~a! of Fig.
11 is the enlargement of the central part which shows
self-similarity of the energy spectra, while the inset~b! of
Fig. 11 gives the log-log plot of the total energy widthWj of
j order Fibonacci stub structure with the Fibonacci num
F j . As is well known, the energy spectra of quasiperiod
structures form Cantor-like sets with Lebesque meas
equal to zero. The self-similarity and scaling property of t
energy spectra are characteristics of quasiperiodicity.25,26

Charge density distributions in Fibonacci structures
in general aperiodic and inhomogeneous, as the system
the critical states. We here present two examples with par
etersl A5 l B5LA51, LB51/2, andj 513, as shown in Figs
12~a! and 12~b!. They, with different transmission probabil
ties, appear to display ‘‘weak’’ and ‘‘strong’’ statistical sel

FIG. 10. The first half period of the transmission spectrum for a Fibona
stub structure with parametersLA5 l A5 l B51, LB51/2, and j 513. ~a!
Transmission coefficientT vs the wave vectork; ~b! the enlarged central
part of ~a!.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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similar behaviors. The transmission coefficients of Fi
12~a! and 12~b! are T50.9997501 and 0.1038452, respe
tively. From somewhat self-similar behavior and nearly re
nant transmission shown in Fig. 12~a!, we may ask if there

FIG. 11. The first half period of the energy spectrum of a Fibonacci s
structure with the same parameters as in Fig. 10. Inset~a! is the enlarged
central part; inset~b! is the log-log plot of the total bandwidthWj vs the
Fibonacci numberF j for j 52216.

FIG. 12. The charge density distributions of a Fibonacci stub structure
the same parameters as those in Fig. 10.~a! k50.4094353p, T
50.9997501;~b! k50.80625p, T50.1038452.
Downloaded 13 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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are eigenstates with both perfect resonant transmission
statistical self-similarity. In fact, from Eq.~8!, perfect reso-
nant transmission requiresuM (N)u25uM j u252. According
to the parametrization of the matrix elements,27 the global
transfer matrixM j must be written in the form

M j5S cosw j sin w j

2sin w j cosw j
D , ~37!

wherew j is a phase factor determined by the parameters
the Fibonacci structure. However, since quasiperiodic
makes the energy spectra as well as transmission spect
be singular continuous, we cannot expect that in self-sim
states there are eigenvalues to fulfill this condition of perf
transmission.28 Numerical calculations show that there is n
any eigenk satisfyinguM j u252.

An invariant I 5xj 21
2 1xj

21xj 11
2 22xj 21xjxj 1121 is

usually chosen to characterize the quasiperiodicity of
bonacci structures. As the expressions ofx21 , x0 , x1 for
Fibonacci stub structures have already been derived,
easy to find a precise expression ofI as

I 5 1
4 $@sin2~klA!cot~kLB!2sin2~klB!cot~kLA!#2

1@sin~klA!cos~klA!cot~kLB!2sin~klB!cos~klB!

3cot~kLA!#21sin~klA!sin~klB!sin@k~ l A2 l B!#

3cot~kLA!cot~kLB!@cot~kLB!2cot~kLA!#%. ~38!

We here consider two simple cases.~1! LA5LB5L:

I 5 1
4 cot2~kL!sin2@k~ l A2 l B!#. ~39!

In this expression, ifl A5 l B , thenI 50, which corresponds to
a periodic stub structure. Ifl AÞ l B , in general,IÞ0 for most
k eigenvalues and thus the quasiperiodicity plays a cru
role. ~2! l A5 l B5 l :

I 5 1
4 sin2~kl !@cot~kLA!2cot~kLB!#2. ~40!

Periodicity appears whenLA5LB . If we take l A5 l B5LA

51, LB51/2, thenI 50.25; the quasiperiodic behaviors a
clearly seen in Figs. 10, 11 and 12.

An impressive example to show the role of invariantI is
in the central part of the transmission spectrum. The num
cal results aroundk50.5372 are shown in Figs. 13~a!, 13~b!,
and 13~c! for j 510,13,16, respectively. It is interesting t
note that they are very similar, but the widths ofk in trans-
mission regions are different. The width ratiow10/w135a
'5.2 for j 510 and 13 is almost the same as thatw13/w16

for j 513 and 16. In fact,a5@114(11I )2#1/212(11I ) is
just the scaling index of the renormalization group transf
mation of the six-cycle trace map.5 Indeed a'5.2 if I
50.25. The fact that the fine structures of Fig. 13~a! are
more similar to Fig. 13~c! than Fig. 13~b! implies that the six
cycle is strict. We have also performed the numerical inv
tigation to j 59,12,15, andj 58,11,14, and found that the
six-cycle behavior is robust, although the patterns of tra
mission spectra are different from each other. Actually, t
result for electronic transmission is analogous of electrom
netic waves in Fibonacci dielectric multilayers previous
investigated theoretically and experimentally.29 Although

b

th
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FIG. 13. The transmission spectra of a Fibonacci st
structure aroundk50.5372, ~a! j 510; ~b! j 513; ~c!
j 516. The parameters are the same as those in Fig.
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significant theoretical efforts on electronic transport of
bonacci structures have been made,27,30 more experimenta
investigations are awaited, particularly those on the pres
mesoscopic structures proposed by us, which presents s
challenge for experimentalists.19

VI. SUMMARY AND REMARKS

We have studied the electronic behaviors in quant
wires with serial stubs. A general theory of quantum wa
guide based on the transfer matrix method has been de
oped and then is used to treat periodic stub structures, s
stub structures with a defect stub and Fibonacci stub st
tures. A number of interesting physical properties in conn
tion with the electronic transmission, energy spectra a
charge density distributions in these structures have b
found theoretically. We have emphasized the important r
of the relative ratios of lengths of segments and stubs,
found that whether there are periodicity and symmetry in
transmission and energy spectra depends on the comme
rability of the length parameters. If there is one length ra
which is incommensurate, then the transmission and en
spectra have no periodicity and symmetry even for perio
stub structures. We have also proposed Fibonacci stub s
Downloaded 13 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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tures and have found that the length parameters chosen
be commensurate to exhibit the quasiperiodic behaviors.
cause of this, except for a few incommensurate examples
have paid much attention to the commensurate cases.
physical implications of the incommensurate cases
awaited to be further explored. The charge density distri
tions display the wave coherence in various serial stub st
tures. There are band edge localized states and exte
states in the periodic stub structures, defect localized st
as well as extended states in the serial stub structures w
defect stub, and critical states in the Fibonacci stub str
tures.

Although real quantum wires involve disorder and inte
actions, to capture quasi-one-dimensional feature and
simplicity, we have focused our attention to a single-chan
free-electron model, which seems to be a reasonable app
mation for the highly pure samples with significantly lon
mean free paths. In the network described by this model
scattering is solely determined by the geometric nature of
system, and the relevant quantum interference effects ca
well understood. It is worth pointing out that transport pro
erties of serial stub structures addressed here may be ve
by experiments because, with the advances of nanofab
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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tion technology, fabrication of various serial stub structu
is feasible. For practical measurement, the transmission s
tra discussed above are closely related to the conduct
G5(2e2/h)T.31 Actually, at least two existing experimen
appear to be relevant to our theoretical considerations. K
wenhovenet al.have fabricated an artificial one-dimension
crystal with a corrugated channel in the two-dimensio
electron gas of a GaAs-AlGaAs heterostructure by mean
split-gate technique.18 Its wide-narrow-wide structure is
similar to the periodic stub structure discussed here and
subbands can be treated as independent current chan
The conductance measurement shows the bands and
which exhibit main features are somehow relevant to
results. Also, a Fibonacci lattice with corrugated 30 un
was fabricated by Katsumotoet al.Their resistance measure
ment exhibited quasiperiodic behaviors.19 We think that the
proposed Fibonacci stub structure may be fabricated i
similar way, and thus the conductance measured may
compared with our results. On the other hand, the elec
magnetic localized mode has been observed in optical w
guide of one-dimensional photonic crystal with a defect, a
the defect, which behaved as a resonator or filter with re
tively higher quality factor, is suggested.32 It is therefore
quite natural to believe that for the serial stub structure w
a defect, a state located in the gap can also be detected
may play a useful role in device applications. Clearly, te
nological developments have led and will continue to lead
smaller and smaller scales of nanostructures which will m
iaturize real electron devices further.

Our general theory can also be used to treat other ap
odic serial stub structures, such as Thue-Morse sequenc
even more disordered structures with defect stubs and de
segments. Different structures will lead to different transm
sion spectra which bring the benefits of band tailoring
device exploration.7 It is also interesting, valuable, and cha
lenging to take into account the electron-electron interacti
in the serial stub structures. We hope the present work
stimulate more experimental and theoretical interests
similar mesoscopic structures.
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