258 research outputs found

    Determining the role of external beam radiotherapy in unresectable intrahepatic cholangiocarcinoma: a retrospective analysis of 84 patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intrahepatic cholangiocarcinoma (ICC) is the second most common type of primary liver cancer. Only few studies have focused on palliative radiotherapy used for patients who weren't suitable for resection by surgery. This study was conducted to investigate the effect of external beam radiotherapy (EBRT) for patients with unresectable ICC.</p> <p>Methods</p> <p>We identified 84 patients with ICC from December 1998 through December 2008 for retrospective analysis. Thirty-five of 84 patients received EBRT therapy five times a week (median dose, 50 Gy; dose range, 30-60 Gy, in fractions of 1.8-2.0 Gy daily; EBRT group); the remaining 49 patients comprised the non-EBRT group. Tumor response, jaundice relief, and survival rates were compared by Kaplan-Meier analysis. Patient records were reviewed and compared using Cox proportional hazard analysis to determine factors that affect survival time in ICC.</p> <p>Results</p> <p>After EBRT, complete response (CR) and partial response (PR) of primary tumors were observed in 8.6% and 28.5% of patients, respectively, and CR and PR of lymph node metastases were observed in 20% and 40% of patients. In 19 patients with jaundice, complete and partial relief was observed in 36.8% and 31.6% of patients, respectively. Median survival times were 5.1 months for the non-EBRT group and 9.5 months for the EBRT group (<it>P </it>= 0.003). One-and two-year survival rates for EBRT versus non-EBRT group were 38.5% versus 16.4%, and 9.6% versus 4.9%, respectively. Multivariate analysis revealed that clinical symptoms, larger tumor size, no EBRT, multiple nodules and synchronous lymph node metastases were associated with poorer prognosis.</p> <p>Conclusions</p> <p>EBRT as palliative care appears to improve prognosis and relieve the symptom of jaundice in patients with unresectable ICC.</p

    Spin Caloritronics

    Get PDF
    This is a brief overview of the state of the art of spin caloritronics, the science and technology of controlling heat currents by the electron spin degree of freedom (and vice versa).Comment: To be published in "Spin Current", edited by S. Maekawa, E. Saitoh, S. Valenzuela and Y. Kimura, Oxford University Pres

    Molecular Cloning and Characterization of Two Genes Encoding Dihydroflavonol-4-Reductase from Populus trichocarpa

    Get PDF
    Dihydroflavonol 4-reductase (DFR, EC 1.1.1.219) is a rate-limited enzyme in the biosynthesis of anthocyanins and condensed tannins (proanthocyanidins) that catalyzes the reduction of dihydroflavonols to leucoanthocyanins. In this study, two full-length transcripts encoding for PtrDFR1 and PtrDFR2 were isolated from Populus trichocarpa. Sequence alignment of the two PtrDFRs with other known DFRs reveals the homology of these genes. The expression profile of PtrDFRs was investigated in various tissues of P. trichocarpa. To determine their functions, two PtrDFRs were overexpressed in tobacco (Nicotiana tabacum) via Agrobacterium-mediated transformation. The associated color change in the flowers was observed in all 35S:PtrDFR1 lines, but not in 35S:PtrDFR2 lines. Compared to the wild-type control, a significantly higher accumulation of anthocyanins was detected in transgenic plants harboring the PtrDFR1. Furthermore, overexpressing PtrDFR1 in Chinese white poplar (P. tomentosa Carr.) resulted in a higher accumulation of both anthocyanins and condensed tannins, whereas constitutively expressing PtrDFR2 only improved condensed tannin accumulation, indicating the potential regulation of condensed tannins by PtrDFR2 in the biosynthetic pathway in poplars

    One-Pot Green Synthesis and Bioapplication ofl-Arginine-Capped Superparamagnetic Fe3O4 Nanoparticles

    Get PDF
    Water-solublel-arginine-capped Fe3O4 nanoparticles were synthesized using a one-pot and green method. Nontoxic, renewable and inexpensive reagents including FeCl3,l-arginine, glycerol and water were chosen as raw materials. Fe3O4 nanoparticles show different dispersive states in acidic and alkaline solutions for the two distinct forms of surface bindingl-arginine. Powder X-ray diffraction and X-ray photoelectron spectroscopy were used to identify the structure of Fe3O4 nanocrystals. The products behave like superparamagnetism at room temperature with saturation magnetization of 49.9 emu g−1 and negligible remanence or coercivity. In the presence of 1-ethyl-3-(dimethylaminopropyl) carbodiimide hydrochloride, the anti-chloramphenicol monoclonal antibodies were connected to thel-arginine-capped magnetite nanoparticles. The as-prepared conjugates could be used in immunomagnetic assay

    Prediction of Protein Domain with mRMR Feature Selection and Analysis

    Get PDF
    The domains are the structural and functional units of proteins. With the avalanche of protein sequences generated in the postgenomic age, it is highly desired to develop effective methods for predicting the protein domains according to the sequences information alone, so as to facilitate the structure prediction of proteins and speed up their functional annotation. However, although many efforts have been made in this regard, prediction of protein domains from the sequence information still remains a challenging and elusive problem. Here, a new method was developed by combing the techniques of RF (random forest), mRMR (maximum relevance minimum redundancy), and IFS (incremental feature selection), as well as by incorporating the features of physicochemical and biochemical properties, sequence conservation, residual disorder, secondary structure, and solvent accessibility. The overall success rate achieved by the new method on an independent dataset was around 73%, which was about 28–40% higher than those by the existing method on the same benchmark dataset. Furthermore, it was revealed by an in-depth analysis that the features of evolution, codon diversity, electrostatic charge, and disorder played more important roles than the others in predicting protein domains, quite consistent with experimental observations. It is anticipated that the new method may become a high-throughput tool in annotating protein domains, or may, at the very least, play a complementary role to the existing domain prediction methods, and that the findings about the key features with high impacts to the domain prediction might provide useful insights or clues for further experimental investigations in this area. Finally, it has not escaped our notice that the current approach can also be utilized to study protein signal peptides, B-cell epitopes, HIV protease cleavage sites, among many other important topics in protein science and biomedicine

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
    corecore