13 research outputs found

    Application of multireflection grazing incidence method for stress measurements in polished Al–Mg alloy and CrN coating

    Get PDF
    Multi-reflection grazing incidence geometry, referred to as MGIXD, characterized by a small and constant incidence angle, was applied to measure low surface stresses in very thin layers of Al–Mg alloy and CrN coating. These two materials were selected in order to deal with the low and high levels of residual stress, respectively. The influence of different mechanical treatments on residual stresses was studied for Al–Mg samples. It was found that both rolling and mechanical polishing influence the distribution and amplitude of residual stress in surface layers. In the case of CrN coating, a very high compressive stress was generated during the deposition process. The stress distributions determined by the MGIXD method is in good agreement with the classic sin2 technique results for all studied samples. In performing stress measurements for a powder sample, it was found that the application of the Göbel mirror in the incident beam strongly reduces statistical and misalignment errors. Additionally, the root mean square values of the third order lattice strain within diffracting grains were determined

    Application of multireflection grazing incidence method for stress measurements in polished Al–Mg alloy and CrN coating

    Get PDF
    Multi-reflection grazing incidence geometry, referred to as MGIXD, characterized by a small and constant incidence angle, was applied to measure low surface stresses in very thin layers of Al–Mg alloy and CrN coating. These two materials were selected in order to deal with the low and high levels of residual stress, respectively. The influence of different mechanical treatments on residual stresses was studied for Al–Mg samples. It was found that both rolling and mechanical polishing influence the distribution and amplitude of residual stress in surface layers. In the case of CrN coating, a very high compressive stress was generated during the deposition process. The stress distributions determined by the MGIXD method is in good agreement with the classic sin2 technique results for all studied samples. In performing stress measurements for a powder sample, it was found that the application of the Göbel mirror in the incident beam strongly reduces statistical and misalignment errors. Additionally, the root mean square values of the third order lattice strain within diffracting grains were determined

    Design of network coding based reliable sensor networks

    No full text
    Network coding can be very useful in achieving a balance between energy efficiency and end-to-end packet error in sensor networks, particularly if only a subset of the nodes act as encoding nodes. In this article, a mathematical model and a heuristic algorithm are proposed to plan for the best placement of encoding nodes while ensuring reliability. These approaches are also able to address scenarios where sensor networks, using different gateways, are federated. In this case a distributed storage system is required to ensure the recovery of packets when related coded packets arrive to the different gateways. The experimental results show that the adequate number and placement of encoding nodes can be effectively determined, significantly enhancing the performance of constrained sensor networks using network coding. (C) 2019 Elsevier B.V. All rights reserved.FCT (Foundation for Science and Technology) from Portugal within CEOT (Center for Electronic, Optoelectronic and Telecommunications) [UID/MULTI/00631/2019]Thamar University - Yemeninfo:eu-repo/semantics/publishedVersio
    corecore