718 research outputs found
Dinâmica espaço-temporal de Rhopalosiphum padi e disseminação de BYDV-PAV.
Orientador: Douglas Lau
Dinâmica espaço-temporal de Rhopalosiphum padi e disseminação de BYDV-PAV - calibração do modelo ABISM utilizando microparcelas.
Orientador: José MaurÃcio Cunha Fernandes
Inferring Fitness Effects from Time-Resolved Sequence Data with a Delay-Deterministic Model.
A common challenge arising from the observation of an evolutionary system over time is to infer the magnitude of selection acting upon a specific genetic variant, or variants, within the population. The inference of selection may be confounded by the effects of genetic drift in a system, leading to the development of inference procedures to account for these effects. However, recent work has suggested that deterministic models of evolution may be effective in capturing the effects of selection even under complex models of demography, suggesting the more general application of deterministic approaches to inference. Responding to this literature, we here note a case in which a deterministic model of evolution may give highly misleading inferences, resulting from the nondeterministic properties of mutation in a finite population. We propose an alternative approach that acts to correct for this error, and which we denote the delay-deterministic model. Applying our model to a simple evolutionary system, we demonstrate its performance in quantifying the extent of selection acting within that system. We further consider the application of our model to sequence data from an evolutionary experiment. We outline scenarios in which our model may produce improved results for the inference of selection, noting that such situations can be easily identified via the use of a regular deterministic model
Search for massive rare particles with the SLIM experiment
The search for magnetic monopoles in the cosmic radiation remains one of the
main aims of non-accelerator particle astrophysics. Experiments at high
altitude allow lower mass thresholds with respect to detectors at sea level or
underground. The SLIM experiment is a large array of nuclear track detectors at
the Chacaltaya High Altitude Laboratory (5290 m a.s.l.). The results from the
analysis of 171 m exposed for more than 3.5 y are here reported. The
completion of the analysis of the whole detector will allow to set the lowest
flux upper limit for Magnetic Monopoles in the mass range 10 - 10
GeV. The experiment is also sensitive to SQM nuggets and Q-balls, which are
possible Dark Matter candidates.Comment: Presented at the 29-th ICRC, Pune, India (2005
Parity Violation in Neutron Resonances in 107,109Ag
Parity nonconservation (PNC) was studied in p-wave resonances in Ag by measuring the helicity dependence of the neutron total cross section. Transmission measurements on natural Ag were performed in the energy range 32 to 422 eV with the time-of-flight method at the Manuel Lujan Neutron Scattering Center at Los Alamos National Laboratory. A total of 15 p-wave neutron resonances were studied in 107Ag and ninep-wave resonances in 109Ag. Statistically significant asymmetries were observed for eight resonances in 107Ag and for four resonances in109Ag. An analysis treating the PNC matrix elements as random variables yields a weak spreading width of Γw=(2.67-1.21+2.65)×10-7 eV for107Ag and Γw=(1.30-0.74+2.49)×10-7 eV for 109Ag
Search for strange quark matter and Q-balls with the SLIM experiment
We report on the search for Strange Quark Matter (SQM) and charged Q-balls
with the SLIM experiment at the Chacaltaya High Altitude Laboratory (5230 m
a.s.l.) from 2001 to 2005. The SLIM experiment was a 427 m array of
Nuclear Track Detectors (NTDs) arranged in modules of cm
area. SLIM NTDs were exposed to the cosmic radiation for 4.22 years after which
they were brought back to the Bologna Laboratory where they were etched and
analyzed. We estimate the properties and energy losses in matter of nuclearites
(large SQM nuggets), strangelets (small charged SQM nuggets) and Q-balls; and
discuss their detection with the SLIM experiment. The flux upper limits in the
CR of such downgoing particles are at the level of /cm/s/sr
(90% CL).Comment: 4 pages, 7 eps figures. Talk given at the 24th International
Conference on Nuclear Tracks in Solids, Bologna, Italy, 1-5 September 200
Parity Violation in Neutron Resonances in 115In
Parity nonconservation (PNC) was studied in p-wave resonances in indium by measuring the helicity dependence of the neutron total cross section in the neutron energy range 6.0–316 eV with the time-of-flight method at LANSCE. A total of 36 p-wave neutron resonances were studied in 115In, and statistically significant asymmetries were observed for nine cases. An analysis treating the PNC matrix elements as random variables yields a weak matrix element of M=(0.67-0.12+0.16) meV and a weak spreading width of Γw=(1.30-0.43+0.76)×10-7 eV
A vanishing viscosity approach to a rate-independent damage model
We analyze a rate-independent model for damage evolution in elastic bodies. The central quantities are a stored energy functional and a dissipation functional, which is assumed to be positively homogeneous of degree one. Since the energy is not simultaneously (strictly) convex in the damage variable and the displacements, solutions may have jumps as a function of time. The latter circumstance makes it necessary to recur to suitable notions of weak solution. However, the by-now classical concept of global energetic solution fails to describe accurately the behavior of the system at jumps. Hence, we consider rate-independent damage models as limits of systems driven by viscous, rate-dependent dissipation. We use a technique for taking the vanishing viscosity limit, which is based on arc-length reparameterization. In this way, in the limit we obtain a novel formulation for the rate-independent damage model, which highlights the interplay of viscous and rate-independent effects in the jump regime, and provides a better description of the energetic behavior of the system at jump
Structural Health Monitoring for Performance Assessment of Bridges under Flooding and Seismic Actions
Bridges can be subjected to damaging environmental actions due to flooding and seismic hazards. Flood actions that result in scour are a leading cause of bridge failure, while seismic actions that induce lateral forces may lead to high ductility demand that exceeds pier capacity. When combined, seismic actions and scour can lead to effects that depend on the governing scour condition affecting a bridge. Loss of stiffness under scour can reduce the ductility capacity of a bridge but can also lead to an increase in flexibility that may reduce seismic inertial forces. Conversely, increased flexibility can lead to deck collapse due to support loss, so there exists some uncertainty about the combined effect of both phenomena. A necessary step towards the performance assessment of bridges under flooding and seismic actions is to calibrate numerical models that can reproduce structural responses under different actions. A further step is verifying the achievement of performance goals defined by codes. Structural health monitoring (SHM) techniques allow the computation of performance parameters that are useful for calibrating numerical models and performing direct checks of performance goal compliance. In this paper, various strategies employed to monitor bridge health against scour and seismic actions are discussed, with a particular focus on vibration-based damage identification methods
Results of the Search for Strange Quark Matter and Q-balls with the SLIM Experiment
The SLIM experiment at the Chacaltaya high altitude laboratory was sensitive
to nuclearites and Q-balls, which could be present in the cosmic radiation as
possible Dark Matter components. It was sensitive also to strangelets, i.e.
small lumps of Strange Quark Matter predicted at such altitudes by various
phenomenological models. The analysis of 427 m^2 of Nuclear Track Detectors
exposed for 4.22 years showed no candidate event. New upper limits on the flux
of downgoing nuclearites and Q-balls at the 90% C.L. were established. The null
result also restricts models for strangelets propagation through the Earth
atmosphere.Comment: 14 pages, 11 EPS figure
- …