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Abstract

Bridges can be subjected to damaging environmental actions due to flooding and
seismic hazards. Flood actions that result in scour are a leading cause of bridge
failure, while seismic actions that induce lateral forces may lead to high
ductility demand that exceeds pier capacity. When combined, seismic actions
and scour can lead to effects that depend on the governing scour condition
affecting a bridge. Loss of stiffness under scour can reduce the ductility
capacity of a bridge but can also lead to an increase in flexibility that may
reduce seismic inertial forces. Conversely, increased flexibility can lead to deck
collapse due to support loss, so there exists some uncertainty about the
combined effect of both phenomena. A necessary step towards the
performance assessment of bridges under flooding and seismic actions is to
calibrate numerical models that can reproduce structural responses under
different actions. A further step is verifying the achievement of performance
goals defined by codes. Structural health monitoring (SHM) techniques allow
the computation of performance parameters that are useful for calibrating
numerical models and performing direct checks of performance goal
compliance. In this paper, various strategies employed to monitor bridge health
against scour and seismic actions are discussed, with a particular focus on
vibration-based damage identification methods.

Keywords: scour; seismic; damage; hazard; vibration-based methods

Introduction

Bridges are a key component of infra-
structure networks and it is para-
mount that their life expectancy is
maximised so as to minimise transport
disruption while maintaining high
safety standards. Worldwide, bridge
assets are ageing and in many cases
are approaching their original
(intended) design lives. For economic
reasons it is often not possible to
replace these structures outright.
Thus, the field of infrastructure main-
tenance management (IMM) is con-
cerned with the preservation of asset
stock through prolonging the service
lives of structures by protecting them
against deleterious actions. Environ-
mental loading from generally uncor-
related sources such as flooding,
earthquakes and wind and tempera-
ture fluctuations is one of the main
sources of damage to existing

bridges. This paper is concerned with
the combined action of flooding and
earthquakes, so more attention is
given to discussing these actions
herein. Flooding can induce hydro-
dynamic pushover loads that are
applied to bridges by increased
water stage heights, which can pose
problems to lateral stability. More
commonly, flooding leads to the gen-
eration of foundation scour
erosion,1–3 a term used to describe
the washing away of the soil from
around bridge foundations by hydrau-
lic action. Scour is the leading cause
of bridge collapse worldwide for
bridges with foundations located in
waterways,4–6 as it reduces the stiff-
ness and capacity of foundations and
can cause sudden failure.7 Earth-
quakes also pose a significant threat
to bridge safety in seismic-prone
regions and can cause sudden
element failure if capacity design

principles have not been followed at
the design stage. Unfortunately,
many existing European bridges are
in this condition, since the adoption
of capacity design principles is quite
recent in most seismic-prone Euro-
pean countries.

Bridge design generally takes into
account the various damaging actions
expected over the bridge’s lifespan.
Scour design involves the calculation
of an allowable design scour depth
using methodologies such as the Color-
ado State University (CSU) formula2

and ensuring the placement of spread
footings below this depth,8 or using
adequate pile lengths to mitigate
losses in shaft friction. Furthermore,
hydraulic countermeasures such as
maintaining wide bridge openings and
streamlining pier faces can assist in
reducing scour development. For
earthquakes, reference design loads
are used to ensure adequate capacity.
Of growing concern, however, is that
the combined action of these uncorre-
lated events (scour and earthquakes)
is generally not well understood or
explicitly taken into account in the
bridge design process. These uncorre-
lated events, meaning that the origin
of the actions are not related or
linked, can have a significantly differ-
ent effect on a bridge’s response
depending on the condition of each
action. Some recent studies have
begun to analyse the joint effect of
these particular phenomena.9–11 For
example, a reduction in foundation
stiffness due to scouring leads to
higher modal periods, which may
reduce the effect of seismic inertial
forces at a given scoured pier. The
loss of foundation capacity due to
scour, on the other hand, means that
an originally benign earthquake load
may become critical, especially if
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scour induces secondary damage
effects such as pier tilting, differential
settlement or cracking.

In this paper, a survey of the different
damage scenarios induced by the
actions of scour and/or earthquakes is
presented and the relevant monitoring
strategies for the individual and com-
bined actions are discussed. The next
section presents an overview of per-
formance assessment procedures for
scour and seismic actions. After this,
an overview of damage scenarios and
monitoring approaches is presented
for scour and then for seismic actions.
This is followed by a description of
the joint action of the two hazards
and a discussion of the techniques
that can potentially be applied to
monitor the combined effect of the
two types of action. A case study of
the effect of scour on the seismic
response of a multi-span bridge is
then presented, and finally conclusions
based on the findings of this study are
drawn.

Performance Assessment
Procedures for Bridge
Structures under Scour and
Seismic Actions

Seismic Action

The performance assessment of
bridges aims to quantify safety and
performance based on international
standards and guidelines. In Europe,
the assessment of bridge performance
under seismic action often requires
assessing structures that have not
been designed for seismic-prone
areas (due to outdated seismic
hazard maps) or that have been
dimensioned according to outdated
design codes. The philosophy under-
lying the design and assessment of
bridges under seismic action varies
from the approaches relating to
more frequent seismic actions that
typically do not damage structures.
This philosophy is translated in the
following performance goals. The
structure must be able to withstand:
(a) minor or frequent earthquake
shaking without damage, (b) moder-
ate levels of shaking with only non-
structural damage, and (c) severe
shaking without collapse or threat to
life.12 These performance goals are
common to both traditional prescrip-
tive approaches and modern perform-
ance-based approaches to seismic
design and assessment.

Traditional prescriptive approaches do
not explicitly address the hazard level
or the costs of the consequences,
since these are implicitly taken into
account in the definition of the
actions on the structure (through the
response spectrum) and the definition
of the capacity (through the behaviour
factor). In modern performance-based
approaches, the target is the achieve-
ment of a certain level of performance,
taking into account the related conse-
quences. This requires the explicit
evaluation of risk based on hazard, vul-
nerability and consequences. The
current design codes, namely the Euro-
codes,13 prescribe a mixed approach
whereby performance goals are
defined in terms of limit states.
However, the achievement of these
goals is entrusted to the satisfaction of
a number of standards related to the
capacity–demand ratio and to
member detailing, such as compliance
with capacity design principles. Many
of these standards come from the
capacity design principles introduced
in New Zealand in the 1970s,14 which
are now integrated into most of
today’s design codes.13

The practical procedure for bridge
assessment in both traditional and
modern approaches requires the mod-
elling of structural performance in
order to compute the capacity (tra-
ditional approach) or vulnerability
(performance-based approach). For
existing bridges this poses significant
challenges to the assessment pro-
cedure due to the large uncertainties
related to the limited knowledge of:
(a) the geometry (dimensions, bound-
ary conditions, etc.), (b) the material
characteristics (strength, elastic
modulus, constitutive behaviour), and
(c) the damage state of the structure
(cracks, corrosion, spalling, carbona-
tion, etc.). Furthermore, computation
of the demand (traditional approach)
or hazard (performance-based
approach) requires information on
the actions on the structure. The
wider and more precise the infor-
mation available on external actions
and structural performance is, the
more complete and reliable the
bridge seismic assessment.

Scour Action

A critical threat to infrastructure
around the world, scour is cited
among the five most common causes
of bridge failure.15,16 Querying the

United States (US) National Bridge
Inventory,17 the most likely cause of
bridge collapses are “hydraulic in
nature”, mostly caused by scour or
other hydraulic factors that are not
related to the age of the bridge. In
the United Kingdom (UK) on the rail
network alone, more than 100 bridge
collapses since 1843 have been attribu-
ted to scour in rivers and estuaries,
causing fifteen fatalities.18,19 Recent
cases include the collapse at Glanrhyd,
Wales in 1987, which led to the deaths
of four people when part of a passen-
ger train fell into the River Towy, and
the failure of the Lower Ashenbottom
viaduct in Lancashire in June 2002.
During the 2009 floods in Cumbria,
seven road and foot bridges failed
due to a combination of scour and
hydrodynamic loading, with the col-
lapse of the Northside road bridge in
Workington causing one fatality and
significant disruption to communities.
More recently, 131 bridges were
damaged during flooding in the same
region, many because of scour.20,21 In
the Republic of Ireland, a primary
bridge on the main Dublin–Belfast
railway line collapsed in August 2009
due to tidal scour.7

For assessing bridges under scour
hazards, deterministic models based
on engineering judgements have
been implemented over the years
using qualitative assessment
methods.22 These methods led to the
definition of a scour vulnerability
rating as the product between the
likelihood and consequence of a
failure induced by scour. Such
approaches provide a qualitative risk
indicator, but not a measure of scour
vulnerability. Risk-based asset man-
agement concepts are widely applied
to help inform these judgements.
Risk assessment involves considering
the outcomes that could result from
a combination of drivers, such as
extreme weather events, and the per-
formance of assets when subjected
to those events. Refs. [2, 16] give
comprehensive guidance for scour
risk management, including refer-
ences to numerous industry and gov-
ernment agency scour management
protocols such as the UK Design
Manual for Roads and Bridges,23 the
US National Bridge Inspection Stan-
dards,17 and the US Forest Service
Scour Assessment Processes.15

Scour risk management guidance typi-
cally deals with uncertainty through a
combination of quantitative and
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qualitative analyses within a tiered fra-
mework, wherein relatively inexpen-
sive and rapid “high-level” screening
is used to prioritise further investment
of resources. This is undertaken to
achieve more detailed assessments at
bridges where scour may be more
likely to occur, or where its conse-
quences may be worse. Multiple
factors are typically considered at
each level within a tiered assessment,
including the physical characteristics
of the bridge structures, the water-
courses that they cross, their wider
flow and sediment regimes and histori-
cal observations or recent changes
relating to scour. The scour risk can
be expressed in generic terms via the
distribution function F[Y(L, S)] of the
possible outcomes Y when a bridge is
subjected to some load representing
the source of the scour hazard, where
L is a random variable describing the
relevant loading condition(s) and S is
a state variable that is used to describe
the uncertain response of a bridge
under a given load (e.g. S = 1 if the
bridge fails due to scour and S = 0
otherwise). The distribution function
G(1) = PR[S = 1|L , 1] is the prob-
ability of failure conditional on a load
event L = l. At this point, no precise
definition of loading condition or
failure is offered. Failure could legiti-
mately be defined as catastrophic
bridge collapse, or in terms of a
failure to continue providing some
specified level of service (e.g. safe
passage for traffic). The function G(1)
can be called a fragility function or vul-
nerability function, and is central to
this type of analysis. In this regard,
Ref. [18] attempts to define empirical
fragility functions on the basis of the
key factors influencing scour risk for
bridge structures and the failure prob-
abilities associated with a range of
possible loading conditions. Experts
were asked to define the failure prob-
ability values associated with increas-
ing flood return periods in order to
define an empirical scour fragility
formulation.

A reliable scour index for a quality
control plan could be defined as the
annual rate of exceedance of a fixed
limit state, calculated on the basis of
the convolution of a flood hazard
curve representing the mean annual
rate of the exceedance of a flood inten-
sity measure (e.g. the water level) and
a flood vulnerability function expres-
sing the conditional probability of
exceeding such a limit state given a

certain intensity measure level. Such
scour fragility functions should be cali-
brated via soil-structure models in
order to capture the global behaviour
of the soil-structure system.6,24–26

The Effect of Flooding on
Bridge Structures

Flooding is effectively the increase in a
river’s normal stage height, resulting in
a faster water flow that poses increased
loading on bridges located in the path
of water surges.1 Several damaging
actions can result from flooding,
which can be categorised into primary
and secondary damage types, as dis-
cussed below.

Damage Scenarios for Bridges
under Flooding

The increased water speed during
flooding results in increased shear
stresses acting on the streambed sedi-
ment,27 which leads to the generation
of scour erosion. The critical shear
stress is defined as the stress imposed
by the water on the sediment at the
point at which movement begins to

occur,28 and is the typical parameter
used to ascertain whether or not
scour will occur under a given flow con-
dition. Other factors at play include the
geotechnical conditions of the sub-
grade, such as the subgrade type,
density and coarseness, among others.

When local water-flow characteristics
suddenly change, such as at the location
of bridge piers, local scour can occur
(primary damage). Downward flow is
induced at the upstream end of bridge
piers, leading to local scour in the
direct vicinity of the structure.1 Scour
is one of the greatest threats to bridges
spanning rivers and estuaries, and has
been the cause of numerous bridge fail-
ures.4,5,7 Aside from total bridge col-
lapse, scour can cause secondary
damage to the superstructure such as
cracking, pier titling and differential
settlement. For example, Fig. 1 shows
a schematic of the type of damage that
an arch-type bridge structure can
sustain due to symmetric and asym-
metric scour affecting a central pier.

In Ref. [29], the failure mechanisms for
scoured masonry bridges are investi-
gated (Fig. 1). A case study was used

A, B - external arch hinges
C, D - internal arch hinges
E, F - rigid block sliding

A, B - external arch hinges
C, D - internal arch hinges
E - crack and hinge
development
F, G - rigid block sliding

Fig. 1: Arch-bridge damage scenarios: (a) failure under symmetrical scour; (b) failure under
asymmetrical scour29
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to carry out a failure analysis by simu-
lating the evolution of the structural
behaviour of a six-span masonry arch
bridge using a finite-element method
(FEM) model correlated with a local
scour profile. The results indicate that
when undermining of the foundation
occurs, the settlements become signifi-
cant, which leads to crack development
in the arches. The structure can fail due
to the rigid-block sliding of the
elements (Fig. 1). Differential settle-
ment gives rise to cracking in the
piers, and failure occurs due to loss of
equilibrium under both symmetric
and asymmetric scour.

Monitoring Approaches and
Methods for Scour and Flood
Damage Detection

Despite visual inspections remaining
popular with asset managers, their sub-
jectivity and discrete undertaking
makes them potentially very unreli-
able, especially due to the added diffi-
culty of observing scour holes in
turbid waters. In recent years, many
innovative monitoring methods have
been developed that are capable of
remotely monitoring the depth of a
scour hole near a foundation of inter-
est, and can be used as part of discrete
maintenance checks. Table 1 outlines
the nature, operational advantages
and drawbacks of a number of these
types of systems.38

Scour (and flooding) can induce sec-
ondary damage effects in structures,
which can result in element or total
failure. The instruments outlined in
Table 1, although useful for measuring
the depth of a scour hole, are not par-
ticularly suited to evaluating the
damage that scour can cause. Table 2
outlines some of the secondary
damage types that can result from
scour, along with a brief outline of
methods for detection and monitoring
of secondary damage.

The Effect of Seismic Action
on Bridges

In this section, the effect of seismic
action on structures is discussed in the
context of the damage that can be sus-
tained and the methods available for
monitoring this damage.

Damage Scenarios for Bridges due
to Seismic Action

Earthquakes can severely compromise
bridge functionality and cause signifi-
cant damage to their main structural
components, which can lead to struc-
tural failure. Damage due to earth-
quakes, an extreme example of which
can be observed from the effects of a
well-known earthquake in Japan
(Fig. 2), have revealed some obvious
deficiencies in design practice and the
need for their resolution. This has

resulted in the application of the new
Eurocodes13 in the US and Europe,
whose new approach is characterised
by requirements for strength increases
and improved detailing in structures
in order to obtain (medium or high)
ductile responses.

Regarding damage scenarios induced
by seismic action, past earthquakes
have shown that failure may occur in
common girder bridges due to: (a) the
collapse of the piers due to bending
or even shear if capacity design pre-
scriptions have not been applied, or
some combination thereof, (b) collapse
of the pier foundations if a capacity
design has not been applied, or (c)
collapse of the deck due to
unseating induced by high seismic
displacement.

Reinforced concrete girder bridges can
be affected by pounding phenomena—
namely, the impact between girders at
the expansion joints—as well as by
the collapse of some of the main
girders due to large relative move-
ments between adjacent pier columns.
Expansion joints can also be affected
by deck displacement, causing com-
pression or tension failure when
pushed against each other or pulled
apart, respectively. Another collapse
mechanism is caused by the unseating
of the bridge deck (Fig. 3), which can
be dually affected by scour (as detailed
later in this study). This can usually be

Device Type System Modus operandi Advantages Drawbacks

Single-use/reset30,31 Tethered
buried switches

Mechanical device buried
near bridge pier; indicates
when scour reaches its depth
by floating up and sending
signal

Simple mechanical
operation

Requires reinstallation after
floating up and can only indicate
scour has reached a certain
depth, providing no further
information

Radar/pulse32–35 Ground
penetrating
radar (GPR)

Determines water–sediment
interface using radar;
manually operated

Gives clear subterranean
features from high-
frequency radar signals

Requires manual operation and
thus is not well suited to remote
monitoring

Driven/
buried30,34,36,37

Vibration-
based sensors

Dynamic strain sensors
measure changes in natural
frequencies of driven rods
due to scour

Gives indication of scour
depth by fitting subgrade
modulus to reference
numerical model of system

Only detects scour local to
sensors and may miss global
scour effects

Fibre Bragg grating
(FBG)8,38–40

FBG water
swellable
polymers

Water swellable polymers
swell upon contact with
water (scoured soil) and
FBG sensors detect resulting
tension

Fitting a number along a rod
allows the scour depth to be
monitored at discrete points

Requires multiple sensors to be
deployed as it can only detect
scour local to each sensor

Soundwaves34,38,41 Sonic
fathometer

Fixed in place to the bridge
element above the waterline;
measures water–sediment
interface

Continuously measures
scour local to element

Can be affected by entrained air
in turbulent flow

Table 1: Scour measuring devices and methods
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attributed to insufficient seat width
and/or inadequate restraining force
capacity—the phenomenon is mainly
connected to outdated bridge construc-
tion methods and simply-supported
span bridges. Increased flexibility due
to scour increases the maximum poten-
tial displacement of the deck due to
seismic action, thus increasing the
probability of failure due to the unseat-
ing of the deck, which can in turn cause
damage to girders—although they are
usually not subject to significant non-

linear behaviour. In contrast, piers
are highly exposed to seismic action
and usually represent one of the
weakest elements of bridges. Most
damage to the columns can be ascribed
to inadequate detailing limiting the
ability of the columns to deform in
the non-elastic range.43 Piers have to
be designed with a ductile capacity in
order to avoid shear failure and with-
stand large deformations in the event
of an earthquake.

In the case of significant ground
shaking, the abutments can also
suffer due to excessive settlement.
The shear failure of concrete bridge
columns occurs at relatively low
structural displacements, when the
longitudinal reinforcement may not
yet have yielded.44 Alternatively,
since shear strength degrades with
inelastic loading cycles, shear failure
can occur after flexural yielding.45

For masonry bridges, failure mainly
affects spandrel walls in the out-of-
plane direction, whereas criticalities at
the arch and pier level can be observed
for the in-plane direction. Suscepti-
bility to damage is clearly influenced

by geometrical parameters (e.g. geo-
metrical ratios between arch rise,
length and thickness, and pier longi-
tudinal and transversal slenderness).
For multi-span masonry arch bridges,
transversal seismic action can induce
shear cracks in squat piers, whereas
for slender piers the structural
response has to be globally analysed
in order to assess potential bending
failure. Essentially, the main issues
are related to the loss of equilibrium
rather than to the failure of the
material for stresses higher than the
ultimate resistance. In the case of
masonry bridges situated in riverbeds,
for which a residual scour depth can
be observed after transient flooding
phenomena, if any maintenance
action is undertaken then a worsened
seismic response can be observed in
the event of an earthquake.

Monitoring Approaches for
Seismic-Damage Detection

Visual inspections are the easiest
method for observing major post-
event damage such as deck unseating
or partial or complete structural

Damage type Method Advantages Drawbacks

Pier settlement Strain gauges at the
deck

Easy installation and simple
measurement

Requires power and may be susceptible to
environmental damage

Pier tilting Inclinometers Easy installation Needs to be very accurate to detect minor
rotations

Pile group tilting Inclinometers Easy installation Needs to be very accurate to detect minor
rotations

Lateral pile buckling Accelerometers Provide inference to stiffness May be difficult to install onto piles

Deck buckling due to
differential settlement

Inclinometers/ strain
gauges

Easy measurement May not provide sufficient accuracy prior to failure
of element

General settlement Camera Can provide image-by-image
data of movements

Requires installation away from structure and may
be susceptible to environmental damage

Table 2: Secondary damage monitoring devices and methods

Fig. 2: An example of poor seismic design:
the Hyogo-Ken Nanbu earthquake in Japan,
199542 (© Copyright 2018, Lecturas Digi-
tales SA de CV)

Fig. 3: Failure due to seismic action: (a) slab unseating in Japan, 1964 (© The Japanese Geotechnical Society); (b) slab unseating in the US,
1989 (Credit: U.S. Geological Survey/photo by C.E. Meyer)
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collapse. However, less obvious
damage such as hidden cracks, stiffness
reduction due to non-linear large-
strain deformation and loss of joint
capacity are not easily observed using
visual approaches. Even the use of
methods such as ultrasound and radar
require significant manual input and
can be very laborious and time con-
suming to undertake. A promising
alternative that is capable of providing
information on structural health after a
potentially damaging event has
occurred consists of analysing the
dynamic behaviour of the structure.
Several monitoring programmes are
currently in operation worldwide
which provide valuable data that can
be used for the development and vali-
dation of damage identification
methods, in order to assess bridge per-
formance and provide real-time infor-
mation on safety in the aftermath of
an extreme event.46–49

After a seismic event or a flood, by
applying appropriate damage detec-
tion techniques to the responses
retrieved from sensors,50 a quick
assessment of the structural condition
of bridges can be obtained. For
seismic structural health monitoring
(SHM), three main categories of accel-
eration response are typically sought:
(a) the response of the superstructure
(deck, piers, towers), which retrieves
the fundamental modal parameters,
and the response of the foundation
(bases of the piers, abutments), which
provides information on the soil-struc-
ture interaction condition and the
spatial variation of the acting ground
motion, (b) the recorded motions in
the free field close to the structure,
and (c) the ground failure arrays in
the vicinity of the structure.49 Analysis
of responses in real time using
vibration-based damage-identification
algorithms can be used to make
informed decisions related to the
bridge performance. In recent years,
several approaches to damage identifi-
cation have been proposed based on
the analysis of structures’ responses to
vibrations.51,52 Analysing changes in
modal characteristics between the orig-
inal (undamaged) state and the current
(potentially damaged) state of a bridge
(or element) is the most common
approach used in SHM. Methods
based on frequency changes can be
reliably applied to detect
damage,6,24,53 although they are
usually unable to provide adequate
information about the location of the

damage (however, for a recent study
related to scour damage localisation,
see Ref. [26]). More effective
methods for detecting the location of
seismic-induced damage include those
based on the analysis of changes in
modal52 or operational54–58 shapes or
their derivatives. In addition to infor-
mation on the global behaviour of
bridges such as increased elemental
flexibility due to damage or the depen-
dency of the modal parameters on the
amplitude of the input excitation, for
example, distributed sensors can also
provide localised information on
potential sites of failure. Examples of
this include malfunction or unintended
functioning of bearings and connec-
tions, which can critically affect
performance.59

The Combined Action of
Flooding and Earthquakes

Structural damage rarely occurs in
isolation, and recently the phenom-
enon of structures sustaining
damage from uncorrelated sources is
gaining increasing interest. The
damage caused by one mechanism
can completely change the result of
that caused by another mechanism.
In this paper, the joint action of
earthquakes and scour are considered
in the context of how an originally
benign earthquake could pose a sig-
nificantly exacerbated threat, or
otherwise, to a bridge that has
already been damaged by scour.
Critical damage combinations are dis-
cussed in this section, and SHM
approaches to damage caused by
combined actions are subsequently
discussed.

Critical Damage Combinations

Changes in the dynamic behaviour of
bridges associated with the presence
of a scour profile lead to increased fun-
damental periods for deeper scour
depths.6,31,54,60,61 This increase in the
period may be beneficial in combi-
nation with earthquakes as it lowers
the inertial forces transferred to the
superstructure. In reality, however,
this benefit is often negated by the
presence of secondary damage effects
arising from the scour process such as
cracking, differential settlement, pier
tilting and compromised pile lateral
capacity, among others, thus resulting
in increased vulnerability to seismic
action. Moreover, the reduction in

load transfer to a scoured pier is
likely negated by an increased transfer
to adjacent piers or elements. Further-
more, previously described phenom-
ena like deck unseating can be
exacerbated by structures having
increased flexibility. As shown in Ref.
[62], which presents an analysis of the
influence of scour on the seismic
response of reinforced concrete
bridges, the fundamental period of
the bridge (increased by the scour
depth) determines to what extent the
inertial force caused by earthquakes
can transfer to the structure.

In masonry arch structures, compro-
mised support and differential settle-
ment due to scour can be very
detrimental, significantly increasing
the likelihood of shear cracks occurring
at a compromised pier under earth-
quake action. The restoration of foun-
dation stiffness via maintenance
activities can also increase the transfer
of inertial forces into the superstruc-
ture under earthquake action, which
once again can have catastrophic con-
sequences if unseen secondary
damage exists.

SHM for Combined Actions

Due to the wide range of primary and
secondary damage types that can
affect a bridge as a result of scour
and seismic action, it is very difficult
for maintenance personnel to ade-
quately characterise such damage
using traditional approaches. Even
the recently developed scour monitor-
ing sensors described previously are
only really capable of measuring the
depth of the scour affecting a struc-
ture, as they typically give no infor-
mation on the condition of the
structure due to the impact of this
scour.32–35,38,63

The most feasible and widely appli-
cable approach to monitoring struc-
tural damage due to scour and
seismic action is based on vibration
methods, typically using acceler-
ometers (or other motion sensors) to
measure the structural vibration
response.64 These methods have
already gained significant traction in
the seismic damage detection field,
and independently they have also
advanced significantly in terms of
scour monitoring in recent years, thus
they are becoming increasingly well
suited to monitoring the effects of
joint action (cracking, foundation
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stiffness loss, non-linear behaviour,
etc.).6,26,31,54,61,65–69

There exist many methods of damage
detection based on measuring struc-
tural vibrations, both in the time and
frequency domains, through either
online monitoring instruments
located on and in the structure
itself,70,71 or offline monitoring using
a passing reference vehicle.72–74

Methods include frequency-based
approaches,6,31,66,68,75 mode-shape-
based approaches,52,72,76 mode-shape
curvature approaches,54 and damping-
based approaches,77 among others.
Limitations in these approaches such
as the influence of environmental
effects on modal properties are con-
stantly being challenged and over-
come.78 In the particular case of
multiple hazard conditions, some of
the advantages of vibration-based
techniques applied using sensors
installed on bridges are as follows:

. The presence of a constantly
updated structural signature, which
allows damage to be quickly ident-
ified and structural vulnerability to
be updated accordingly.

. The creation of calibrated, continu-
ously updated numerical models to
assess structural health as well as
structural behaviour (prognosis)
under forecast action.

. The capability to manage both in-
service and emergency situations
with the same network of sensors,
which increases safety while redu-
cing costs.

. The capability to detect losses in
stiffness in structures due to the
primary effects of scour (foundation
damage), the secondary effects of
scour (crack propagation) and the
effects of seismic action (distribution
of structural cracking and inelastic
element damage).

A number of questions related to the
use of vibration-based monitoring
systems for multi-hazard situations
are still open and require further con-
sideration. They include:

. Defining the optimal performance
parameters that can be computed
from recorded structural data with
the aim of identifying the damage
scenarios induced by different
hazards. A similar concern relates
to the sensitivity of proposed
damage identification algorithms to
detect the changes induced by the

joint action of scour and seismic
action. Issues relate to sensor noise
and the limited excitation of the
structure induced by ambient
vibrations.

. Optimising the number and
locations of recording sensors for
multi-hazard conditions, for
example to detect not only scour
and seismic damage but also degra-
dation due to fatigue and other
environmental sources. In relation
to scour, one study tested various
sensor locations (vertical and hori-
zontal) along a laboratory-scale pier
and examined the resulting variation
in the measured predominant
natural frequencies.79 However, in
relation to multi-hazards for an
entire bridge, this issue remains a
challenge.

. Understanding the influence of
environmental variability on per-
formance parameters that can
produce variations even in unda-
maged structures. Variations in
environmental conditions such as
temperature fluctuations and
wind-induced vibrations can add
significant “noise” to measured
signals. In the context of frequency
measurements, temperature for
example can induce an apparent
shift in frequency which can over-
shadow the changes due to
damage. One method to mitigate
this is to use a temperature sensor
and develop interaction diagrams
of temperature vs frequency to
remove this trend from damage-
induced changes. Moreover, struc-
tural vibration for measurement
purposes is typically excited by
passing vehicles,6 which can
induce vehicle-related frequencies
and other distortions to the
vibration spectra.26,80 These fre-
quencies include axle impulse fre-
quencies and frequencies related
to the rate of passage of vehicles
across structures. One way to
reduce the influence of these
effects is to only measure the
vibration after a vehicle has
passed across the structure and
departed. Nevertheless, significant
challenges still remain in the accu-
rate characterisation of damage
effects from vibration data where
the relevant spectra are polluted
with environmental and vehicle-
related noise.

. Applying these techniques to “real-
world” conditions—that is, using
data recorded on actual structures

under multi-hazard scenarios. Most
of the algorithms proposed in the lit-
erature can correctly identify
damage when working on data
from numerical models but then fail
when applied to real-world bridges.
Further efforts should thus be made
to move to full-scale real-world
testing.

Case Study: Effect of Scour on
a Bridge’s Seismic Response

A simple case study is presented in this
section whereby scour is implemented
in a numerical model around one pier
of a multi-span bridge and the effect
of this scour on the seismic response is
investigated. The numerical modelling
is undertaken using OpenSees,81 open-
source software for simulating the
seismic response of structural systems.

Multi-Span Bridge Model

A simplified multi-span bridge with six
spans supported on five I-shaped
bridge columns is modelled for this
case study. A schematic of the bridge
geometry is shown in Fig. 4. The
bridge deck is modelled as an elastic
beam and the abutments are modelled
as roller supports in order to enable the
bridge to move in the longitudinal
direction. Modelling the bridge deck
as an elastic beam is a simplification
as it does not allow non-linear behav-
iour to occur at this location. A future
study is planned which will involve
developing a more comprehensive
model for each element. The bridge
column non-linear response is mod-
elled using a lumped plasticity Giber-
son model.82 Piers 1 and 5 have
elastomeric bearings that are modelled
using elastic springs with stiffnesses
proportional to the shear modulus
and geometric characteristics that are
representative of typical bearings.
Piers 2, 3 and 4 are affixed to the super-
structure by means of pinned connec-
tions. The base of each pier is
modelled by incorporating a non-
linear spring, the characteristics of
which are founded on the tri-linear
idealisation of the full moment-curva-
ture analysis of a column cross-
section. Takeda hysteretic rules83 are
used to define the non-linear spring be-
haviour. The material characteristics—
including discretised steel fibres and
unconfined and confined concrete—
are developed based on the
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recommendations of Eurocode 8/2 and
8/3.84,85

The scour is modelled as an increase in
the effective length of Pier 4, in line
with the procedure undertaken in
Ref. [54]. For the analysis in this
paper, the scour is implemented
around a scour hole in Pier 4 in 2-m
increments from 0 m to a maximum
depth of 10 m in order to ascertain
the effect on the seismic response of
the bridge under progressive local
scour.6 It should be noted that a 10-m
scour hole is unlikely to develop in
the real world, at least in isolation,
but is implemented in this analysis to

ascertain the seismic response in this
extreme case.6

Analysis and Results

In this section, the results of both an
eigenvalue modal study of the numeri-
cal model and a seismic response
analysis of the bridge under scour are
presented. The mode shapes of the
bridge were extracted from the Open-
Sees model by obtaining a solution to
the Eigenproblem.86 The first two
mode shapes of the bridge with Pier 4
under no scour and 10 m scour are pre-
sented in Fig. 5.

The first mode of the bridge is longi-
tudinal (Fig. 5a) and the second mode
of the bridge is lateral (Fig. 5c).
Figure 5b shows the change in the
longitudinal mode due to scour and
Fig. 5d shows the change in the
lateral mode. The effect of the
scour on the modal parameters is
quite evident and easily detectable
using most vibration-based damage
identification algorithms. The periods
of the first and second modes increase
from their initial values by 16% and
35%, respectively and the mode
shapes exhibit localised variations
around the scoured pier.

Fig. 4: Schematic of the non-linear numerical bridge model used in the case study (Units: m)

Fig. 5: Bridge mode shapes under zero and 10 m scour of Pier 4: (a) mode 1 of the bridge – no scour, (b) mode 1 of the bridge – 10 m scour,
(c) mode 2 of the bridge – no scour, (d) mode 2 of the bridge −10 m scour
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Further insight can be gained from
investigating the response of the bridge
under an applied seismic load for the
case where Pier 4 is subjected to 0 m
scour up to a maximum of 10 m scour.
A 40-s seismic motion (simulating the
1999 Athens earthquake) scaled to a
peak ground acceleration (PGA) of
approximately 10 m/s2 is considered in
this analysis. The time history and
response spectrum of the earthquake
are shown in Figs. 6a and 6b, respect-
ively. For this analysis, the motion is
applied to the bridge in the lateral direc-
tion, perpendicular to the direction of
traffic (the y-direction in Fig. 4).

For the applied seismic time history in
Fig. 6, the absolute accelerations and
displacements extracted from the
deck level of Pier 4 for progressive
scour are illustrated in Fig. 7. Figure
7a shows the deck displacement at
Pier 4 for scour depths ranging from
0 to 10 m in 2-m increments. The
level of residual displacement (the
level of damage) increases as the
scour depth increases. The peak dis-
placement of the top of Pier 4 under
seismic action increases from 0.1 m
with 0 m scour to 0.12 m with 10 m
scour due to the increased flexibility
of the bridge. Figure 7b shows the
acceleration response of the same
point on the structure under the
earthquake load for various scour
depths. The peak structural accelera-
tion increases from 11.6 m/s2 under
0 m scour to 12.4 m/s2 under 10 m
scour. This increase is due to the
changed mode shape and shift of the
second modal period towards values
corresponding to a higher amplifica-
tion, as shown by the response spec-
trum in Fig. 6. Figures 7c and 7d
show magnified portions of the dis-
placement and acceleration responses
from Figs. 7a and 7b, respectively for
the cases of 0 and 10 m scour,
respectively.

Table 3 presents the maximum shear
forces in each of the five bridge
piers (see Fig. 4) for the incident
earthquake load with Pier 4 under
progressive scour, as well as the sum
of the shear forces across all piers.
As the scour depth at Pier 4 increases
from 2 to 10 m, the shear force (F)
measured at Pier 4 decreases by
almost 50% with respect to the
unscoured value. This occurs in com-
bination with increases in the shear
force by values of between 2 and
5% in the remaining piers (except
Piers 1 and 5, which have elastomeric

bearings). Scour is therefore ben-
eficial in terms of reducing the shear
forces in the scoured pier under
seismic action; however, it results—
to some extent—in a redistribution
of these forces to the other piers.
The increased flexibility of the
bridge when one of the piers is

scoured leads, in this case, to an
overall reduction in total shear FT,
but this benefit is negated by the
redistribution of the shear forces
internally to the other piers (for
example in Pier 3 from 5.76 to
5.90 kN for a scour depth of 0 and
10 m, respectively).
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Conclusion

Bridge performance under damaging
action is an area of growing societal
interest due to increasing failure rates
and their associated costs. Generally,
bridges are monitored periodically
using visual-based inspection methods.
Highly subjective and discrete in
nature, the primary disadvantage of
these approaches is that there may be
damage present that is missed due to
access issues or infrequent inspection.
In the separate fields examining the
effects of seismic action on bridges
and the effects of scour on bridges,
inspection and monitoring methods
have been developed in parallel.
Despite flooding and earthquake
events being uncorrelated, it is very
possible that they may both impact the
same bridge, causing changes in the
bridge’s behaviour. The presence of
scour can alter and change the impact
of earthquakes, generally increasing
their danger. Scour can sometimes
result in localised benefits due to
causing increased flexibility that in
turn reduces the inertial forces trans-
ferred to the superstructure. Generally
speaking, however, the secondary
damage effects that scour can cause
tend to weaken structures, thus exacer-
bating the earthquake damage poten-
tial. Moreover, the local reduction in
inertial load transfer will likely be
negated by increased load transfer to
other elements of the bridge.

Significant efforts have been made in
recent years to develop instruments
capable of monitoring the evolution
of the depth of scour holes that form
near bridge foundations. Although
this is useful, it has the distinct disad-
vantage that these types of sensor can
give no information on the distress
experienced by structures due to the
presence of scour. More recently,
vibration-based damage detection
methods have come to the fore,

aligning with similar developments in
the seismic-damage detection field.
The many advantages related to
vibration-based methods for damage
identification lead to postulation that
their use offers the most practical way
to ensure the identification of a wide
variety of damage scenarios occurring
under scour and/or seismic action.

Nomenclature

a acceleration
aG ground acceleration
F shear force
FT total shear force
G distribution function
h height of pier
L random variable describing a load

condition
PR probability of failure
S state variable describing uncertain

response of a bridge under a given
load

Sa Spectral amplitude
T modal period
u displacement
Y Possible outcomes when a bridge is

subjected to some load representing
a source of a scour hazard
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